Timezone: »
Deep learning has achieved great success in a variety of tasks such as recognizing objects in images, predicting the sentiment of sentences, or image/speech synthesis by training on a large-amount of data. However, most existing success are mainly focusing on perceptual tasks, which is also known as System I intelligence. In real world, many complicated tasks, such as autonomous driving, public policy decision making, and multi-hop question answering, require understanding the relationship between high-level variables in the data to perform logical reasoning, which is known as System II intelligence. Integrating system I and II intelligence lies in the core of artificial intelligence and machine learning.
Graph is an important structure for System II intelligence, with the universal representation ability to capture the relationship between different variables, and support interpretability, causality, and transferability / inductive generalization. Traditional logic and symbolic reasoning over graphs has relied on methods and tools which are very different from deep learning models, such Prolog language, SMT solvers, constrained optimization and discrete algorithms. Is such a methodology separation between System I and System II intelligence necessary? How to build a flexible, effective and efficient bridge to smoothly connect these two systems, and create higher order artificial intelligence?
Graph neural networks, have emerged as the tool of choice for graph representation learning, which has led to impressive progress in many classification and regression problems such as chemical synthesis, 3D-vision, recommender systems and social network analysis. However, prediction and classification tasks can be very different from logic/symbolic reasoning.
Bits and pieces of evidence can be gleaned from recent literature, suggesting graph neural networks may be a general tool to make such a connection. For example, \cite{battaglia2018relational,barcelo2019logical} viewed graph neural networks as tools to incorporate explicitly logic reasoning bias. \cite{kipf2018neural} used graph neural network to reason about interacting systems,
\cite{yoon2018inference,zhang2020efficient} used neural networks for logic and probabilistic inference, \cite{hudson2019learning, hu2019language} used graph neural networks for reasoning on scene graphs for visual question reasoning, \cite{qu2019probabilistic} studied reasoning on knowledge graphs with graph neural networks, and \cite{khalil2017learning, xu2018powerful, velickovic2019neural, sato2019approximation} used graph neural networks for discrete graph algorithms. However, there can still be a long way to go for a satisfactory and definite answers on the ability of graph neural networks for automatically discovering logic rules, and conducting long-range multi-step complex reasoning in combination with perception inputs such as language, vision, spatial and temporal variation.
{\bf Can graph neural networks be the key bridge to connect System I and System II intelligence? Are there other more flexible, effective and efficient alternatives?} For instance, \citep{wang2019satnet} combined max satisfiability solver with deep learning, \citep{manhaeve2018deepproblog} combined directed graphical and Problog with deep learning, \citep{skryagin2020splog}~combined sum product network with deep learning, \citep{silver2019few,alet2019graph}~combined logic reasoning with reinforcement learning. How do these alternative methods compare with graph neural networks for being a bridge?
The goal of this workshop is to bring researchers from previously separate fields, such as deep learning, logic/symbolic reasoning, statistical relational learning, and graph algorithms, into a common roof to discuss this potential interface and integration between System I and System intelligence. By providing a venue for the confluence of new advances in theoretical foundations, models and algorithms, as well as empirical discoveries, new benchmarks and impactful applications,
Sat 5:50 a.m. - 6:00 a.m.
|
Opening Remarks: Jian Tang & Le Song
(
Opening
)
SlidesLive Video » |
Jian Tang · Le Song 🔗 |
Sat 6:00 a.m. - 6:30 a.m.
|
Keynote: Yoshua Bengio
(
Invited Talk
)
SlidesLive Video » |
Yoshua Bengio 🔗 |
Sat 6:30 a.m. - 6:40 a.m.
|
Keynote: Yoshua Bengio (Q&A)
(
Q&A
)
|
Yoshua Bengio 🔗 |
Sat 6:40 a.m. - 7:10 a.m.
|
Invited Talk: Peter Battaglia
(
Invited Talk
)
SlidesLive Video » |
Peter Battaglia 🔗 |
Sat 7:10 a.m. - 7:20 a.m.
|
Invited Talk: Peter Battaglia (Q&A)
(
Q&A
)
|
Peter Battaglia 🔗 |
Sat 7:20 a.m. - 7:25 a.m.
|
Spotlight Talk (1): Generating Programmatic Referring Expressions via Program Synthesis
(
Spotlight Talk
)
SlidesLive Video » |
Jiani Huang 🔗 |
Sat 7:25 a.m. - 7:30 a.m.
|
Spotlight Talk (2): Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning
(
Spotlight Talk
)
SlidesLive Video » |
Qing Li 🔗 |
Sat 7:30 a.m. - 7:35 a.m.
|
Spotlight Talk (3): Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs
(
Spotlight Talk
)
SlidesLive Video » |
Hongyu Ren 🔗 |
Sat 7:35 a.m. - 7:40 a.m.
|
Spotlight Talk (4): Barking up the right tree: an approach to search over molecule synthesis DAGs
(
Spotlight Talk
)
SlidesLive Video » |
John Bradshaw 🔗 |
Sat 7:40 a.m. - 8:30 a.m.
|
Morning Poster Session
(
Poster
)
Jinghan Shi et al. Heterogeneous Graph Neural Network for Recommendation. https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 1) Yangyang Hu et al. Enhancing Neural Mathematical Reasoning by Abductive Combination with Symbolic Library https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 2) Binbin Hu et al. KGNN: Distributed Framework for Graph Neural Knowledge Representation. https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 3) Hao Tang et al.. Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous Graph Neural Networks. https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 4) Giuseppe Futia et al. Modeling the semantics of data sources with graph neural networks https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 5) Laetitia Teodorescu et al. SpatialSim: Recognizing Spatial Configurations of Objects with Graph Neural Networks. https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 6) Binghong Chen et al. Learning Retrosynthetic Planning with Chemical Reasoning https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 7) Maxwell Crouse et al. Neural Analogical Matching.https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 8) Yuta Kawachi et al. End-to-end permutation learning with Hungarian algorithm. https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 9) Mikołaj Sacha et al. Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits. https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 10) Aleksandar Stanic et al.. Hierarchical Relational Inference. https://us02web.zoom.us/j/83436973845?https://us02web.zoom.us/j/82916453037?pwd=SGlwN3hnM0RKaGJUZ0lZSHA1Kzh5QT09 (Breakout Room 11) |
🔗 |
Sat 8:30 a.m. - 9:00 a.m.
|
Invited Talk: Zico Kolter
(
Invited Talk
)
|
Zico Kolter 🔗 |
Sat 9:00 a.m. - 9:10 a.m.
|
Invited Talk: Zico Kolter (Q&A)
(
Q&A
)
|
Zico Kolter 🔗 |
Sat 10:30 a.m. - 11:00 a.m.
|
Invited Talk: Tommi Jaakkola
(
Invited Talk
)
|
Tommi Jaakkola 🔗 |
Sat 11:00 a.m. - 11:10 a.m.
|
Invited Talk: Tommi Jaakkola (Q&A)
(
Q&A
)
|
🔗 |
Sat 11:10 a.m. - 11:40 a.m.
|
Invited Talk 4: Luc De Raedt
(
Invited Talk
)
SlidesLive Video » |
Luc De Raedt 🔗 |
Sat 11:40 a.m. - 11:50 a.m.
|
Invited Talk 4: Luc De Raedt (Q&A)
(
Q&A
)
|
Luc De Raedt 🔗 |
Sat 11:50 a.m. - 11:55 a.m.
|
Spotlight talk (5): Modeling the semantics of data sources with graph neural networks
(
Spotlight Talk
)
SlidesLive Video » |
Giuseppe Futia 🔗 |
Sat 11:55 a.m. - 12:00 p.m.
|
Spotlight talk (6): SpatialSim: Recognizing Spatial Configurations of Objects with Graph Neural Networks
(
Spotlight Talk
)
SlidesLive Video » |
Laetitia Teodorescu 🔗 |
Sat 12:00 p.m. - 12:05 p.m.
|
Spotlight Talk (7): Enhancing Neural Mathematical Reasoning by Abductive Combination with Symbolic Library
(
Spotlight Talk
)
|
yangyang hu 🔗 |
Sat 12:05 p.m. - 12:10 p.m.
|
Spotlight Talk (8): Learning Retrosynthetic Planning with Chemical Reasoning
(
Spotlight Talk
)
SlidesLive Video » |
Binghong Chen 🔗 |
Sat 12:10 p.m. - 1:00 p.m.
|
Afternoon Poster Session
(
Poster
)
Arseny Skryagin et al.. Sum-Product Logic: Integrating Probabilistic Circuits into DeepProbLog. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 1) Maria Leonor Pacheco et al.. Neural-Symbolic Modeling for Natural Language Discourse. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 2) Richard Li et al.. Towards Practical Multi-Object Manipulation using Relational Reinforcement Learning. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 3) Nichita Uțiu et al.. Performance Evaluation of Graph Convolutional Networks with Siamese Training for Few-Shot Classification of Nodes. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 4) Rajat Koner et al. Scenes and Surroundings: Scene Graph Generation using Relation Transformer. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 5) Meng Qu et al. RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 6) Aditya Mogadala et al. Sparse Graph to Sequence Learning for Vision Conditioned Long Textual Sequence Generation https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 7) Xinshi Chen et al. Understanding Deep Learning with Reasoning Layer https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 8) Jiani Huang et al. Generating Programmatic Referring Expressions via Program Synthesis. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 9) Qing Li et al. Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 10) Hongyu Ren et al. Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs. https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 11) John Bradshaw et al. Barking up the right tree: an approach to search over molecule synthesis DAGs https://us02web.zoom.us/j/82921478440?pwd=VWZSZm1HTWRENEJpQytSL0w5RXdKUT09 (Breakout room 12) |
🔗 |
Sat 1:00 p.m. - 1:30 p.m.
|
Invited Talk 5:Ferran Alet
(
Invited Talk
)
SlidesLive Video » |
Ferran Alet 🔗 |
Sat 1:30 p.m. - 1:40 p.m.
|
Invited Talk 5:Ferran Alet (Q&A)
(
Q&A
)
|
Ferran Alet 🔗 |
Sat 1:40 p.m. - 2:10 p.m.
|
Invited Talk 6: Kristian Kersting
(
Invited Talk
)
|
Kristian Kersting 🔗 |
Sat 2:10 p.m. - 2:20 p.m.
|
Invited Talk 6: Kristian Kersting (Q&A)
(
Q&A
)
|
Kristian Kersting 🔗 |
Sat 2:20 p.m. - 2:30 p.m.
|
Concluding Remarks
(
Conclusion
)
|
🔗 |
Author Information
Jian Tang (HEC Montreal & MILA)
Le Song (Georgia Institute of Technology)
Jure Leskovec (Stanford University)
Renjie Liao (University of Toronto)
Yujia Li (DeepMind)
Sanja Fidler (University of Toronto, NVIDIA)
Richard Zemel (University of Toronto)
Ruslan Salakhutdinov (Carnegie Mellen University)
More from the Same Authors
-
2021 : Online Sub-Sampling for Reinforcement Learning with General Function Approximation »
Dingwen Kong · Ruslan Salakhutdinov · Ruosong Wang · Lin Yang -
2022 : LinkBERT: Language Model Pretraining with Document Link Knowledge »
Michihiro Yasunaga · Jure Leskovec · Percy Liang -
2023 : Retrieval-Augmented Multimodal Language Modeling »
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Rich James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Wen-tau Yih -
2023 : A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs »
Zhaocheng Zhu · Xinyu Yuan · Mikhail Galkin · Louis-Pascal Xhonneux · Ming Zhang · Maxime Gazeau · Jian Tang -
2023 : Plan, Eliminate, and Track --- Language Models are Good Teachers for Embodied Agents. »
Yue Wu · So Yeon Min · Yonatan Bisk · Ruslan Salakhutdinov · Amos Azaria · Yuanzhi Li · Tom Mitchell · Shrimai Prabhumoye -
2023 : SPRING: Studying Papers and Reasoning to play Games »
Yue Wu · Shrimai Prabhumoye · So Yeon Min · Yonatan Bisk · Ruslan Salakhutdinov · Amos Azaria · Tom Mitchell · Yuanzhi Li -
2023 : PRODIGY: Enabling In-context Learning Over Graphs »
Qian Huang · Hongyu Ren · Peng Chen · Gregor Kržmanc · Daniel Zeng · Percy Liang · Jure Leskovec -
2023 : Learning Large Graph Property Prediction via Graph Segment Training »
Kaidi Cao · Phitchaya Phothilimthana · Sami Abu-El-Haija · Dustin Zelle · Yanqi Zhou · Charith Mendis · Jure Leskovec · Bryan Perozzi -
2023 Poster: Geometric Latent Diffusion Models for 3D Molecule Generation »
Minkai Xu · Alexander Powers · Ron Dror · Stefano Ermon · Jure Leskovec -
2023 Poster: Graph Generative Model for Benchmarking Graph Neural Networks »
Minji Yoon · Yue Wu · John Palowitch · Bryan Perozzi · Ruslan Salakhutdinov -
2023 Poster: Transformers Meet Directed Graphs »
Simon Markus Geisler · Yujia Li · Daniel Mankowitz · Taylan Cemgil · Stephan Günnemann · Cosmin Paduraru -
2023 Poster: Retrieval-Augmented Multimodal Language Modeling »
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Richard James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Scott Yih -
2022 Poster: Recurrent Model-Free RL Can Be a Strong Baseline for Many POMDPs »
Tianwei Ni · Benjamin Eysenbach · Ruslan Salakhutdinov -
2022 Spotlight: Recurrent Model-Free RL Can Be a Strong Baseline for Many POMDPs »
Tianwei Ni · Benjamin Eysenbach · Ruslan Salakhutdinov -
2022 Poster: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2022 Spotlight: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2021 Poster: Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection »
Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez -
2021 Poster: Towards Understanding and Mitigating Social Biases in Language Models »
Paul Liang · Chiyu Wu · LP Morency · Ruslan Salakhutdinov -
2021 Poster: Reasoning Over Virtual Knowledge Bases With Open Predicate Relations »
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Spotlight: Reasoning Over Virtual Knowledge Bases With Open Predicate Relations »
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen -
2021 Spotlight: Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection »
Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez -
2021 Spotlight: Towards Understanding and Mitigating Social Biases in Language Models »
Paul Liang · Chiyu Wu · LP Morency · Ruslan Salakhutdinov -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Spotlight: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Poster: f-Domain Adversarial Learning: Theory and Algorithms »
David Acuna · Guojun Zhang · Marc Law · Sanja Fidler -
2021 Poster: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings »
Matthias Fey · Jan Eric Lenssen · Frank Weichert · Jure Leskovec -
2021 Spotlight: f-Domain Adversarial Learning: Theory and Algorithms »
David Acuna · Guojun Zhang · Marc Law · Sanja Fidler -
2021 Spotlight: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings »
Matthias Fey · Jan Eric Lenssen · Frank Weichert · Jure Leskovec -
2021 Poster: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Poster: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Oral: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Spotlight: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Spotlight: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2020 : Graph Neural Networks for Reasoning over Multimodal Content »
Jure Leskovec -
2020 Workshop: Workshop on Learning in Artificial Open Worlds »
Arthur Szlam · Katja Hofmann · Ruslan Salakhutdinov · Noboru Kuno · William Guss · Kavya Srinet · Brandon Houghton -
2020 : Opening Remarks: Jian Tang & Le Song »
Jian Tang · Le Song -
2020 : Invited Talk 7 Q&A - Jure Leskovec »
Jure Leskovec -
2020 : Invited Talk 7 - Generalizing to Novel Tasks in the Low-Data Regime - Jure Leskovec »
Jure Leskovec -
2020 : Update: Open Graph Benchmark »
Jure Leskovec -
2020 Workshop: Graph Representation Learning and Beyond (GRL+) »
Petar Veličković · Michael M. Bronstein · Andreea Deac · Will Hamilton · Jessica Hamrick · Milad Hashemi · Stefanie Jegelka · Jure Leskovec · Renjie Liao · Federico Monti · Yizhou Sun · Kevin Swersky · Rex (Zhitao) Ying · Marinka Zitnik -
2020 Poster: A Graph to Graphs Framework for Retrosynthesis Prediction »
Chence Shi · Minkai Xu · Hongyu Guo · Ming Zhang · Jian Tang -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Coresets for Data-efficient Training of Machine Learning Models »
Baharan Mirzasoleiman · Jeff Bilmes · Jure Leskovec -
2020 Poster: Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs »
Meng Qu · Tianyu Gao · Louis-Pascal Xhonneux · Jian Tang -
2020 Poster: Graph Structure of Neural Networks »
Jiaxuan You · Jure Leskovec · Kaiming He · Saining Xie -
2020 Poster: Latent Variable Modelling with Hyperbolic Normalizing Flows »
Joey Bose · Ariella Smofsky · Renjie Liao · Prakash Panangaden · Will Hamilton -
2020 Poster: Continuous Graph Neural Networks »
Louis-Pascal Xhonneux · Meng Qu · Jian Tang -
2020 Poster: Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search »
Binghong Chen · Chengtao Li · Hanjun Dai · Le Song -
2020 Poster: Temporal Logic Point Processes »
Shuang Li · Lu Wang · Ruizhi Zhang · xiaofu Chang · Xuqin Liu · Yao Xie · Yuan Qi · Le Song -
2020 Poster: Learning to Simulate Complex Physics with Graph Networks »
Alvaro Sanchez-Gonzalez · Jonathan Godwin · Tobias Pfaff · Rex (Zhitao) Ying · Jure Leskovec · Peter Battaglia -
2020 Poster: Learning To Stop While Learning To Predict »
Xinshi Chen · Hanjun Dai · Yu Li · Xin Gao · Le Song -
2020 Poster: Scalable Deep Generative Modeling for Sparse Graphs »
Hanjun Dai · Azade Nova · Yujia Li · Bo Dai · Dale Schuurmans -
2019 : Sanja Fidler, University of Toronto »
Sanja Fidler -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Poster: Position-aware Graph Neural Networks »
Jiaxuan You · Rex (Zhitao) Ying · Jure Leskovec -
2019 Poster: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Poster: EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis »
Chaoqi Wang · Roger Grosse · Sanja Fidler · Guodong Zhang -
2019 Oral: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Oral: EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis »
Chaoqi Wang · Roger Grosse · Sanja Fidler · Guodong Zhang -
2019 Oral: Position-aware Graph Neural Networks »
Jiaxuan You · Rex (Zhitao) Ying · Jure Leskovec -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Poster: Particle Flow Bayes' Rule »
Xinshi Chen · Hanjun Dai · Le Song -
2019 Poster: Generative Adversarial User Model for Reinforcement Learning Based Recommendation System »
Xinshi Chen · Shuang Li · Hui Li · Shaohua Jiang · Yuan Qi · Le Song -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: Generative Adversarial User Model for Reinforcement Learning Based Recommendation System »
Xinshi Chen · Shuang Li · Hui Li · Shaohua Jiang · Yuan Qi · Le Song -
2019 Oral: Particle Flow Bayes' Rule »
Xinshi Chen · Hanjun Dai · Le Song -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Talk: Opening Remarks »
Kamalika Chaudhuri · Ruslan Salakhutdinov -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Poster: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Oral: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Oral: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Poster: Learning to Explain: An Information-Theoretic Perspective on Model Interpretation »
Jianbo Chen · Le Song · Martin Wainwright · Michael Jordan -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: Structured Control Nets for Deep Reinforcement Learning »
Mario Srouji · Jian Zhang · Ruslan Salakhutdinov -
2018 Poster: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models »
Jiaxuan You · Rex (Zhitao) Ying · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Poster: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models »
Jiaxuan You · Rex (Zhitao) Ying · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Oral: Structured Control Nets for Deep Reinforcement Learning »
Mario Srouji · Jian Zhang · Ruslan Salakhutdinov -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: Learning to Explain: An Information-Theoretic Perspective on Model Interpretation »
Jianbo Chen · Le Song · Martin Wainwright · Michael Jordan -
2017 Poster: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Poster: Variational Policy for Guiding Point Processes »
Yichen Wang · Grady Williams · Evangelos Theodorou · Le Song -
2017 Poster: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Poster: Improved Variational Autoencoders for Text Modeling using Dilated Convolutions »
Zichao Yang · Zhiting Hu · Ruslan Salakhutdinov · Taylor Berg-Kirkpatrick -
2017 Talk: Improved Variational Autoencoders for Text Modeling using Dilated Convolutions »
Zichao Yang · Zhiting Hu · Ruslan Salakhutdinov · Taylor Berg-Kirkpatrick -
2017 Talk: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Talk: Variational Policy for Guiding Point Processes »
Yichen Wang · Grady Williams · Evangelos Theodorou · Le Song -
2017 Talk: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Poster: Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs »
Rakshit Trivedi · Hanjun Dai · Yichen Wang · Le Song -
2017 Talk: Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs »
Rakshit Trivedi · Hanjun Dai · Yichen Wang · Le Song -
2017 Poster: Fake News Mitigation via Point Process Based Intervention »
Mehrdad Farajtabar · Jiachen Yang · Xiaojing Ye · Huan Xu · Rakshit Trivedi · Elias Khalil · Shuang Li · Le Song · Hongyuan Zha -
2017 Poster: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song -
2017 Talk: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song -
2017 Talk: Fake News Mitigation via Point Process Based Intervention »
Mehrdad Farajtabar · Jiachen Yang · Xiaojing Ye · Huan Xu · Rakshit Trivedi · Elias Khalil · Shuang Li · Le Song · Hongyuan Zha