Timezone: »
One proposed solution towards the goal of designing machines that can extrapolate experience across environments and tasks, are inductive biases. Providing and starting algorithms with inductive biases might help to learn invariances e.g. a causal graph structure, which in turn will allow the agent to generalize across environments and tasks.
While some inductive biases are already available and correspond to common knowledge, one key requirement to learn inductive biases from data seems to be the possibility to perform and learn from interventions. This assumption is partially motivated by the accepted hypothesis in psychology about the need to experiment in order to discover causal relationships. This corresponds to an reinforcement learning environment, where the agent can discover causal factors through interventions and observing their effects.
We believe that one reason which has hampered progress on building intelligent agents is the limited availability of good inductive biases. Learning inductive biases from data is difficult since this corresponds to an interactive learning setting, which compared to classical regression or classification frameworks is far less understood e.g. even formal definitions of generalization in RL have not been developed. While Reinforcement Learning has already achieved impressive results, the sample complexity required to achieve consistently good performance is often prohibitively high. This has limited most RL to either games or settings where an accurate simulator is available. Another issue is that RL agents are often brittle in the face of even tiny changes to the environment (either visual or mechanistic changes) unseen in the training phase.
To build intuition for the scope of the generalization problem in RL, consider the task of training a robotic car mechanic that can diagnose and repair any problem with a car. Current methods are all insufficient in some respect -- on-policy policy gradient algorithms need to cycle through all possible broken cars on every single iteration, off-policy algorithms end up with a mess of instability due to perception and highly diverse data, and model-based methods may struggle to fully estimate a complex web of causality.
In our workshop we hope to explore research and new ideas on topics related to inductive biases, invariances and generalization, including:
- What are efficient ways to learn inductive biases from data?
- Which inductive biases are most suitable to achieve generalization?
- Can we make the problem of generalization in particular for RL more concrete and figure out standard terms for discussing the problem?
- Causality and generalization especially in RL
- Model-based RL and generalization.
- Sample Complexity in reinforcement learning.
- Can we create models that are robust visual environments, assuming all the underlying mechanics are the same. Should this count as generalization or transfer learning?
- Robustness to changes in the mechanics of the environment, such as scaling of rewards.
- Can we create a theoretical understanding of generalization in RL, and understand how it is related to the well developed ideas from statistical learning theory.
- in RL, the training data is collected by the agent and it is affected by the agent's policy.
Therefore, the training distribution is not a fixed distribution. How does this affect how we should think about generalization?
The question of generalization in reinforcement learning is essential to the field’s future both in theory and in practice. However there are still open questions about the right way to think about generalization in RL, the right way to formalize the problem, and the most important tasks. This workshop would help to address this issue by bringing together researchers from different backgrounds to discuss these challenges.
Sat 3:00 a.m. - 3:15 a.m.
|
Opening remarks
|
🔗 |
Sat 3:15 a.m. - 4:30 a.m.
|
Poster Session 1
(Poster Session)
|
🔗 |
Sat 4:30 a.m. - 5:00 a.m.
|
Invited talk 1 Silver
(Talk)
link »
SlidesLive Video » Meta Gradient Reinforcement Learning |
David Silver 🔗 |
Sat 5:00 a.m. - 5:10 a.m.
|
QA for invited talk 1 Silver
(10min QA)
|
David Silver 🔗 |
Sat 5:10 a.m. - 5:40 a.m.
|
Invited talk 2 Uhler
(Talk)
link »
SlidesLive Video » Multi-Domain Data Integration: From Observations to Mechanistic Insights |
Caroline Uhler 🔗 |
Sat 5:40 a.m. - 5:50 a.m.
|
QA for invited talk 2 Uhler
(10min QA)
|
Caroline Uhler 🔗 |
Sat 5:50 a.m. - 6:05 a.m.
|
Automatic Data Augmentation for Generalization in Reinforcement Learning
(Spotlight)
link »
SlidesLive Video » http://slideslive.com/38931360 |
Roberta Raileanu 🔗 |
Sat 6:15 a.m. - 7:30 a.m.
|
Poster Session 2
(Poster Session)
|
🔗 |
Sat 7:30 a.m. - 8:10 a.m.
|
Invited talk 3 Yang
(Talk)
link »
SlidesLive Video » Augmenting data to improve robustness – a blessing or a curse? |
Fanny Yang 🔗 |
Sat 8:10 a.m. - 8:40 a.m.
|
Invited talk 4 Bengio
(Talk)
link »
SlidesLive Video » System 2 Priors |
Yoshua Bengio 🔗 |
Sat 8:40 a.m. - 8:50 a.m.
|
QA for invited talk 4 Bengio
(10min QA)
|
Yoshua Bengio 🔗 |
Sat 8:50 a.m. - 9:05 a.m.
|
Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers
(Spotlight)
link »
http://slideslive.com/38931338 |
Swapnil Asawa · Benjamin Eysenbach 🔗 |
Sat 9:05 a.m. - 9:15 a.m.
|
QA for invited talk 3 Yang
(10min QA)
|
Fanny Yang 🔗 |
Sat 9:15 a.m. - 9:45 a.m.
|
Invited talk 5 White
(Talk)
link »
SlidesLive Video » A New RNN algorithm using the computational inductive bias of span independence |
Martha White 🔗 |
Sat 9:45 a.m. - 9:55 a.m.
|
QA for invited talk 5 White
(10min QA)
|
Martha White 🔗 |
Sat 10:00 a.m. - 10:30 a.m.
|
Invited talk 6 Heess
(Talk)
link »
SlidesLive Video » From skills to tasks: Reusing and generalizing knowledge for motor control |
Nicolas Heess 🔗 |
Sat 10:30 a.m. - 10:40 a.m.
|
QA for invited talk 6 Heess
(10min QA)
|
Nicolas Heess 🔗 |
Sat 10:40 a.m. - 11:55 a.m.
|
Poster Session 3
(Poster Session)
|
🔗 |
Sat 11:55 a.m. - 12:25 p.m.
|
Invited talk 7 Wang
(Talk)
link »
SlidesLive Video » Statistical Complexity of RL and the use of regression |
Mengdi Wang 🔗 |
Sat 12:25 p.m. - 12:35 p.m.
|
QA for invited talk 7 Wang
(10min QA)
|
Mengdi Wang 🔗 |
Sat 12:35 p.m. - 1:05 p.m.
|
Invited talk 8 Kakade
(Talk)
SlidesLive Video » On the Theory of Policy Gradient Methods: Optimality, Generalization and Distribution Shift |
Sham Kakade 🔗 |
Sat 1:05 p.m. - 1:15 p.m.
|
QA for invited talk 8 Kakade
(10min QA)
|
Sham Kakade 🔗 |
Sat 1:15 p.m. - 2:15 p.m.
|
Panel Discussion Session
(Discussion Panel)
|
🔗 |
-
|
Evaluating Agents without Rewards
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931301 |
Danijar Hafner 🔗 |
-
|
Reinforcement Learning Generalization with Surprise Minimization
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931304 |
Jerry Zikun Chen 🔗 |
-
|
Learning Action Priors for Visuomotor transfer
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931326 |
Anurag Ajay 🔗 |
-
|
MOPO: Model-based Offline Policy Optimization
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931302 |
Tianhe (Kevin) Yu 🔗 |
-
|
Meta Attention Networks: Meta Learning Attention To Modulate Information Between Sparsely Interacting Recurrent Modules
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931327 |
Kanika Madan 🔗 |
-
|
Spatially Structured Recurrent Modules
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931303 |
Nasim Rahaman 🔗 |
-
|
Neural Dynamic Policies for End-to-End Sensorimotor Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931329 |
Abhinav Gupta 🔗 |
-
|
Watch your Weight Reinforcement Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931330 |
Robert Müller 🔗 |
-
|
HAT: Hierarchical Alternative Training for Long Range Policy Transfer
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931331 |
Min Sun · Wei-Cheng Tseng 🔗 |
-
|
Learning to Learn from Failures Using Replay
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931328 |
Tao Chen 🔗 |
-
|
Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931362 |
Gerrit Schoettler 🔗 |
-
|
Bridging Worlds in Reinforcement Learning with Model-Advantage
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931333 |
Ashwin Kalyan · Nirbhay Modhe 🔗 |
-
|
Fighting Copycat Agents in Behavioral Cloning From Multiple Observations
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931530 |
Chuan Wen 🔗 |
-
|
Conditioning of Reinforcement Learning Agents and its Policy Regularization Application
(Poster (5 min))
link »
SlidesLive Video » http://slideslive.com/38931436 |
Arip Asadulaev 🔗 |
-
|
Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931332 |
Karl Pertsch 🔗 |
-
|
Planning to Explore via Self-Supervised World Models
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931334 |
Ramanan Sekar 🔗 |
-
|
Robust Reinforcement Learning using Adversarial Populations
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931336 |
Eugene Vinitsky 🔗 |
-
|
Structure Mapping for Transferability of Causal Models
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931337 |
Purva Pruthi 🔗 |
-
|
Efficient Imitation Learning with Local Trajectory Optimization
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931339 |
Jialin Song 🔗 |
-
|
Efficient Adaptation for End-to-End Vision-Based Robotic Manipulation
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931340 |
Gaurav Sukhatme 🔗 |
-
|
Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931341 |
Henrik Marklund 🔗 |
-
|
Learning Long-term Dependencies Using Cognitive Inductive Biases in Self-attention RNNs
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931335 |
Giancarlo Kerg 🔗 |
-
|
A Differentiable Newton Euler Algorithm for Multi-body Model Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931342 |
Michael Lutter 🔗 |
-
|
Nesterov Momentum Adversarial Perturbations in the Deep Reinforcement Learning Domain
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931437 |
Ezgi Korkmaz 🔗 |
-
|
DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931343 |
Aviral Kumar 🔗 |
-
|
One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931345 |
Saurabh Kumar · Aviral Kumar 🔗 |
-
|
Attention Option-Critic
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931346 |
Raviteja Chunduru 🔗 |
-
|
Towards Self-Paced Context Evaluation for Contextual Reinforcement Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931344 |
Theresa Eimer 🔗 |
-
|
Group Equivariant Deep Reinforcement Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931347 |
Arnab Kumar Mondal 🔗 |
-
|
Probing Dynamic Environments with Informed Policy Regularization
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931348 |
Pierre-Alexandre Kamienny 🔗 |
-
|
Counterfactual Transfer via Inductive Bias in Clinical Settings
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931438 |
Taylor Killian 🔗 |
-
|
Learning Invariant Representations for Reinforcement Learning without Reconstruction
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931349 |
Amy Zhang 🔗 |
-
|
Meta-Reinforcement Learning Robust to Distributional Shift via Model Identification and Experience Relabeling
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931350 |
Russell Mendonca 🔗 |
-
|
Towards TempoRL: Learning When to Act
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931351 |
André Biedenkapp 🔗 |
-
|
On the Equivalence of Bi-Level Optimization and Game-Theoretic Formulations of Invariant Risk Minimization
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931353 |
Kartik Ahuja 🔗 |
-
|
PAC Imitation and Model-based Batch Learning of Contextual MDPs
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931354 |
Yash Nair 🔗 |
-
|
Learning Robust Representations with Score Invariant Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931352 |
Daksh Idnani 🔗 |
-
|
Learning Off-Policy with Online Planning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931439 |
Harshit Sikchi 🔗 |
-
|
Model-based Adversarial Meta-Reinforcement Learning
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931355 |
Tengyu Ma · Zichuan Lin 🔗 |
-
|
If MaxEnt RL is the Answer, What is the Question?
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931440 |
Benjamin Eysenbach 🔗 |
-
|
Multi-Task Reinforcement Learning as a Hidden-Parameter Block MDP
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931356 |
Amy Zhang 🔗 |
-
|
Discrete Planning with End-to-end Trained Neuro-algorithmic Policies
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931357 |
Marin Vlastelica 🔗 |
-
|
Maximum Entropy Model Rollouts: Fast Model Based Policy Optimization without Compounding Errors
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931358 |
Chi Zhang 🔗 |
-
|
Counterfactual Data Augmentation using Locally Factored Dynamics
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931359 |
Silviu Pitis 🔗 |
-
|
Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels
(Poster)
link »
SlidesLive Video » http://slideslive.com/38931361 |
Ilya Kostrikov 🔗 |
Author Information
Anirudh Goyal (Université de Montréal)
Rosemary Nan Ke (MILA, University of Montreal)
I am a PhD student at Mila, I am advised by Chris Pal and Yoshua Bengio. My research interest are efficient credit assignment, causal learning and model-based reinforcement learning. Here is my homepage https://nke001.github.io/
Jane Wang (DeepMind)
Stefan Bauer (Max Planck Institute for Intelligent Systems)
Theophane Weber (DeepMind)
Fabio Viola (DeepMind)
Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)
Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.
Stefan Bauer (MPI for Intelligent Systems)
More from the Same Authors
-
2021 : On the Fairness of Causal Algorithmic Recourse »
Julius von Kügelgen · Amir Karimi · Umang Bhatt · Isabel Valera · Adrian Weller · Bernhard Schölkopf · Amir-Hossein Karimi -
2021 : Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects »
Julius von Kügelgen · Nikita Agarwal · Jakob Zeitler · Afsaneh Mastouri · Bernhard Schölkopf -
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wuthrich · Felix Widmaier · Peter V Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wüthrich · Felix Widmaier · Peter Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Variational Causal Networks: Approximate Bayesian Inference over Causal Structures »
Yashas Annadani · Jonas Rothfuss · Alexandre Lacoste · Nino Scherrer · Anirudh Goyal · Yoshua Bengio · Stefan Bauer -
2021 : Lie interventions in complex systems with cycles »
Michel Besserve · Bernhard Schölkopf -
2022 : Latent Variable Models for Bayesian Causal Discovery »
Jithendaraa Subramanian · Jithendaraa Subramanian · Yashas Annadani · Ivaxi Sheth · Stefan Bauer · Derek Nowrouzezahrai · Samira Ebrahimi Kahou -
2022 : Learning to induce causal structure »
Rosemary Nan Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Matthew Botvinick · Theophane Weber · Michael Mozer · Danilo J. Rezende -
2022 : On the Generalization and Adaption Performance of Causal Models »
Nino Scherrer · Anirudh Goyal · Stefan Bauer · Yoshua Bengio · Rosemary Nan Ke -
2022 : P28: On the Generalization and Adaption Performance of Causal Models »
Rosemary Nan Ke -
2022 : Maximum Mean Discrepancy Distributionally Robust Nonlinear Chance-Constrained Optimization with Finite-Sample Guarantee »
Yassine Nemmour · Heiner Kremer · Bernhard Schölkopf · Jia-Jie Zhu -
2022 : Session 1: New Reasoning Problems and Modes of Reasoning »
Robert Ness · Rosemary Nan Ke · Armando Solar-Lezama -
2022 : Invited talks I, Q/A »
Bernhard Schölkopf · David Lopez-Paz -
2022 : Invited Talks 1, Bernhard Schölkopf and David Lopez-Paz »
Bernhard Schölkopf · David Lopez-Paz -
2022 Poster: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Poster: Generalization and Robustness Implications in Object-Centric Learning »
Andrea Dittadi · Samuele Papa · Michele De Vita · Bernhard Schölkopf · Ole Winther · Francesco Locatello -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Generalization and Robustness Implications in Object-Centric Learning »
Andrea Dittadi · Samuele Papa · Michele De Vita · Bernhard Schölkopf · Ole Winther · Francesco Locatello -
2022 Poster: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 Poster: Causal Inference Through the Structural Causal Marginal Problem »
Luigi Gresele · Julius von Kügelgen · Jonas Kübler · Elke Kirschbaum · Bernhard Schölkopf · Dominik Janzing -
2022 Poster: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2022 Poster: On the Adversarial Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir Karimi · Bernhard Schölkopf -
2022 Spotlight: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2022 Spotlight: Causal Inference Through the Structural Causal Marginal Problem »
Luigi Gresele · Julius von Kügelgen · Jonas Kübler · Elke Kirschbaum · Bernhard Schölkopf · Dominik Janzing -
2022 Spotlight: On the Adversarial Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir Karimi · Bernhard Schölkopf -
2022 Spotlight: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 : Q&A »
Nan Rosemary Ke · Stefan Bauer -
2022 : Deep Learning for Causality »
Stefan Bauer -
2022 Tutorial: Causality and Deep Learning: Synergies, Challenges and the Future »
Nan Rosemary Ke · Stefan Bauer -
2021 : Panel Discussion »
Rosemary Nan Ke · Danijar Hafner · Pieter Abbeel · Chelsea Finn · Chelsea Finn -
2021 : Invited Talk by Nan Rosemary Ke »
Rosemary Nan Ke -
2021 Poster: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2021 Spotlight: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2021 Poster: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: Bayesian Quadrature on Riemannian Data Manifolds »
Christian Fröhlich · Alexandra Gessner · Philipp Hennig · Bernhard Schölkopf · Georgios Arvanitidis -
2021 Poster: Robust Representation Learning via Perceptual Similarity Metrics »
Saeid A Taghanaki · Kristy Choi · Amir Hosein Khasahmadi · Anirudh Goyal -
2021 Spotlight: Bayesian Quadrature on Riemannian Data Manifolds »
Christian Fröhlich · Alexandra Gessner · Philipp Hennig · Bernhard Schölkopf · Georgios Arvanitidis -
2021 Oral: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Spotlight: Robust Representation Learning via Perceptual Similarity Metrics »
Saeid A Taghanaki · Kristy Choi · Amir Hosein Khasahmadi · Anirudh Goyal -
2021 Poster: Necessary and sufficient conditions for causal feature selection in time series with latent common causes »
Atalanti Mastakouri · Bernhard Schölkopf · Dominik Janzing -
2021 Poster: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Spotlight: Necessary and sufficient conditions for causal feature selection in time series with latent common causes »
Atalanti Mastakouri · Bernhard Schölkopf · Dominik Janzing -
2021 Spotlight: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Poster: Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning »
Sumedh Sontakke · Arash Mehrjou · Laurent Itti · Bernhard Schölkopf -
2021 Spotlight: Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning »
Sumedh Sontakke · Arash Mehrjou · Laurent Itti · Bernhard Schölkopf -
2021 Poster: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Poster: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Spotlight: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2020 Poster: Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules »
Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio -
2020 Poster: Small-GAN: Speeding up GAN Training using Core-Sets »
Samrath Sinha · Han Zhang · Anirudh Goyal · Yoshua Bengio · Hugo Larochelle · Augustus Odena -
2020 Poster: Weakly-Supervised Disentanglement Without Compromises »
Francesco Locatello · Ben Poole · Gunnar Ratsch · Bernhard Schölkopf · Olivier Bachem · Michael Tschannen -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 Poster: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness »
Raphael Suter · Djordje Miladinovic · Bernhard Schölkopf · Stefan Bauer -
2019 Oral: Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness »
Raphael Suter · Djordje Miladinovic · Bernhard Schölkopf · Stefan Bauer -
2019 Oral: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: Kernel Mean Matching for Content Addressability of GANs »
Wittawat Jitkrittum · Wittawat Jitkrittum · Patsorn Sangkloy · Muhammad Waleed Gondal · Amit Raj · James Hays · Bernhard Schölkopf -
2019 Oral: Kernel Mean Matching for Content Addressability of GANs »
Wittawat Jitkrittum · Wittawat Jitkrittum · Patsorn Sangkloy · Patsorn Sangkloy · Muhammad Waleed Gondal · Muhammad Waleed Gondal · Amit Raj · Amit Raj · James Hays · James Hays · Bernhard Schölkopf · Bernhard Schölkopf -
2019 Poster: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Poster: First-Order Adversarial Vulnerability of Neural Networks and Input Dimension »
Carl-Johann Simon-Gabriel · Yann Ollivier · Leon Bottou · Bernhard Schölkopf · David Lopez-Paz -
2019 Poster: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2019 Oral: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Oral: First-Order Adversarial Vulnerability of Neural Networks and Input Dimension »
Carl-Johann Simon-Gabriel · Yann Ollivier · Leon Bottou · Bernhard Schölkopf · David Lopez-Paz -
2019 Oral: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2018 Poster: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Poster: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Oral: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Oral: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Poster: Tempered Adversarial Networks »
Mehdi S. M. Sajjadi · Giambattista Parascandolo · Arash Mehrjou · Bernhard Schölkopf -
2018 Poster: Differentially Private Database Release via Kernel Mean Embeddings »
Matej Balog · Ilya Tolstikhin · Bernhard Schölkopf -
2018 Poster: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Oral: Differentially Private Database Release via Kernel Mean Embeddings »
Matej Balog · Ilya Tolstikhin · Bernhard Schölkopf -
2018 Oral: Tempered Adversarial Networks »
Mehdi S. M. Sajjadi · Giambattista Parascandolo · Arash Mehrjou · Bernhard Schölkopf -
2018 Oral: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Poster: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf -
2018 Poster: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Poster: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf -
2018 Oral: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Workshop: Reproducibility in Machine Learning Research »
Rosemary Nan Ke · Anirudh Goyal · Alex Lamb · Joelle Pineau · Samy Bengio · Yoshua Bengio -
2017 Invited Talk: Causal Learning »
Bernhard Schölkopf