Timezone: »
The ICML Workshop on Retrospectives in Machine Learning will build upon the success of the 2019 NeurIPS Retrospectives workshop to further encourage the publication of retrospectives. A retrospective of a paper or a set of papers, by its author, takes the form of an informal paper. It provides a venue for authors to reflect on their previous publications, to talk about how their thoughts have changed following publication, to identify shortcomings in their analysis or results, and to discuss resulting extensions. The overarching goal of MLRetrospectives is to improve the science, openness, and accessibility of the machine learning field, by widening what is publishable and helping to identify opportunities for improvement. Retrospectives also give researchers and practitioners unable to attend conferences access to the author’s updated understanding of their work, which would otherwise only be accessible to their immediate circle. The machine learning community would benefit from retrospectives on much of the research which shapes our field, and this workshop will present an opportunity for a few retrospectives to be presented.
Fri 5:20 a.m. - 5:30 a.m.
|
Welcome
(Talk)
Video
|
Ryan Lowe, Jessica Forde |
Fri 5:30 a.m. - 5:50 a.m.
|
Invited Talk: Bernhard Scholkopf
(Talk)
Video
|
Bernhard Schölkopf |
Fri 5:50 a.m. - 6:00 a.m.
|
Q&A: Bernhard Scholkopf
(Q&A)
|
Bernhard Schölkopf, Mayoore Jaiswal |
Fri 6:00 a.m. - 6:20 a.m.
|
Invited Talk: Pascale Fung
(Talk)
Video
|
Pascale FUNG |
Fri 6:20 a.m. - 6:30 a.m.
|
Q&A: Pascale Fung
(Q&A)
|
Pascale FUNG, Rosanne Liu |
Fri 6:30 a.m. - 6:50 a.m.
|
Invited Talk: Deborah Raji
(Talk)
Video
|
Deborah Raji |
Fri 6:50 a.m. - 7:00 a.m.
|
Q&A: Deborah Raji
(Q&A)
|
Deborah Raji, Jessica Forde |
Fri 7:00 a.m. - 7:10 a.m.
|
Coffee Break
(Break)
|
|
Fri 7:10 a.m. - 7:20 a.m.
|
Contributed Talk: Jonathan Frankle
(Talk)
Video
|
Jonathan Frankle |
Fri 7:20 a.m. - 7:30 a.m.
|
Q&A: Jonathan Frankle
(Q&A)
|
Jonathan Frankle, Mayoore Jaiswal |
Fri 7:30 a.m. - 7:50 a.m.
|
Invited Talk: Dani Yogatama
(Talk)
Video
|
Dani Yogatama |
Fri 7:50 a.m. - 8:00 a.m.
|
Q&A: Dani Yogatama
(Q&A)
|
Dani Yogatama, Jesse Dodge, Jessica Forde |
Fri 8:00 a.m. - 9:00 a.m.
|
Panel Session
(Panel)
|
Jessica Forde |
Fri 9:00 a.m. - 9:20 a.m.
|
Invited Talks: Anima Anandakumar
(Talk)
Video
|
Animashree Anandkumar |
Fri 9:20 a.m. - 9:30 a.m.
|
Q&A: Anima Anandakumar
(Q&A)
|
Animashree Anandkumar, Jessica Forde |
Fri 9:30 a.m. - 11:00 a.m.
|
Lunch Break
(Break)
|
|
Fri 11:00 a.m. - 11:20 a.m.
|
Invited Talk: Margaret Mitchell
(Talk)
Video
|
Jesse Dodge |
Fri 11:20 a.m. - 11:30 a.m.
|
Q&A: Margaret Mitchell
(Q&A)
|
Jesse Dodge |
Fri 11:30 a.m. - 11:50 a.m.
|
Invited Talk: Chris Maddison
(Talk)
Video
|
Chris Maddison |
Fri 11:50 a.m. - 12:00 p.m.
|
Q&A: Chris Maddison
(Q&A)
|
Chris Maddison, Jessica Forde, Jesse Dodge |
Fri 12:00 p.m. - 12:10 p.m.
|
Contributed Talk: Jason Hartford
(Talk)
Video
|
Jason Hartford |
Fri 12:10 p.m. - 12:20 p.m.
|
Q&A: Jason Hartford
(Q&A)
|
Jason Hartford, Jesse Dodge |
Fri 12:20 p.m. - 1:00 p.m.
|
Coffee Break
(Break)
|
|
Fri 1:00 p.m. - 1:20 p.m.
|
Invited Talk: Peter Henderson
(Talk)
Video
|
Peter Henderson |
Fri 1:20 p.m. - 1:30 p.m.
|
Q&A: Peter Henderson
(Q&A)
|
Peter Henderson, Mayoore Jaiswal, Ryan Lowe |
Fri 1:30 p.m. - 2:30 p.m.
|
Brainstorming & Closing
(Breakout session)
|
Mayoore Jaiswal, Ryan Lowe, Jesse Dodge, Jessica Forde, Rosanne Liu |
Author Information
Jessica Forde (Brown University)
Jesse Dodge (University of Washington)
Mayoore Jaiswal (IBM)
Ryan Lowe (OpenAI)
Rosanne Liu (Uber AI Labs)
Rosanne Liu (ML Collective)
Joelle Pineau (McGill University / Facebook)
Yoshua Bengio (Montreal Institute for Learning Algorithms)
More from the Same Authors
-
2020 Workshop: Object-Oriented Learning: Perception, Representation, and Reasoning »
Sungjin Ahn · Adam Kosiorek · Jessica Hamrick · Sjoerd van Steenkiste · Yoshua Bengio -
2020 Poster: Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules »
Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Perceptual Generative Autoencoders »
Zijun Zhang · Ruixiang ZHANG · Zongpeng Li · Yoshua Bengio · Liam Paull -
2020 Poster: Online Learned Continual Compression with Adaptive Quantization Modules »
Lucas Caccia · Eugene Belilovsky · Massimo Caccia · Joelle Pineau -
2020 Poster: Constrained Markov Decision Processes via Backward Value Functions »
Harsh Satija · Philip Amortila · Joelle Pineau -
2020 Poster: Estimating Q(s,s') with Deep Deterministic Dynamics Gradients »
Ashley Edwards · Himanshu Sahni · Rosanne Liu · Jane Hung · Ankit Jain · Rui Wang · Adrien Ecoffet · Thomas Miconi · Charles Isbell · Jason Yosinski -
2020 Poster: Interference and Generalization in Temporal Difference Learning »
Emmanuel Bengio · Joelle Pineau · Doina Precup -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: Small-GAN: Speeding up GAN Training using Core-Sets »
Samrath Sinha · Han Zhang · Anirudh Goyal · Yoshua Bengio · Hugo Larochelle · Augustus Odena -
2020 Poster: Invariant Causal Prediction for Block MDPs »
Amy Zhang · Clare Lyle · Shagun Sodhani · Angelos Filos · Marta Kwiatkowska · Joelle Pineau · Yarin Gal · Doina Precup -
2019 Workshop: AI For Social Good (AISG) »
Margaux Luck · Kris Sankaran · Tristan Sylvain · Sean McGregor · Jonnie Penn · Girmaw Abebe Tadesse · Virgile Sylvain · Myriam Côté · Lester Mackey · Rayid Ghani · Yoshua Bengio -
2019 Workshop: Climate Change: How Can AI Help? »
David Rolnick · Alexandre Lacoste · Tegan Maharaj · Jennifer Chayes · Yoshua Bengio -
2019 Workshop: Generative Modeling and Model-Based Reasoning for Robotics and AI »
Aravind Rajeswaran · Emanuel Todorov · Igor Mordatch · William Agnew · Amy Zhang · Joelle Pineau · Michael Chang · Dumitru Erhan · Sergey Levine · Kimberly Stachenfeld · Marvin Zhang -
2019 Poster: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Poster: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2019 Oral: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2018 Poster: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Oral: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Poster: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Oral: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Poster: An Inference-Based Policy Gradient Method for Learning Options »
Matthew Smith · Herke van Hoof · Joelle Pineau -
2018 Oral: An Inference-Based Policy Gradient Method for Learning Options »
Matthew Smith · Herke van Hoof · Joelle Pineau -
2017 Workshop: Reproducibility in Machine Learning Research »
Rosemary Nan Ke · Anirudh Goyal · Alex Lamb · Joelle Pineau · Samy Bengio · Yoshua Bengio -
2017 Poster: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio