Timezone: »

Challenges in Deploying and Monitoring Machine Learning Systems
Alessandra Tosi · Nathan Korda · Neil Lawrence

Fri Jul 17 05:00 AM -- 01:35 PM (PDT) @
Event URL: https://sites.google.com/view/deploymonitormlsystems »

Until recently, Machine Learning has been mostly applied in industry by consulting academics, data scientists within larger companies, and a number of dedicated Machine Learning research labs within a few of the world’s most innovative tech companies. Over the last few years we have seen the dramatic rise of companies dedicated to providing Machine Learning software-as-a-service tools, with the aim of democratizing access to the benefits of Machine Learning. All these efforts have revealed major hurdles to ensuring the continual delivery of good performance from deployed Machine Learning systems. These hurdles range from challenges in MLOps, to fundamental problems with deploying certain algorithms, to solving the legal issues surrounding the ethics involved in letting algorithms make decisions for your business.

This workshop will invite papers related to the challenges in deploying and monitoring ML systems. It will encourage submission on: subjects related to MLOps for deployed ML systems (such as testing ML systems, debugging ML systems, monitoring ML systems, debugging ML Models, deploying ML at scale); subjects related to the ethics around deploying ML systems (such as ensuring fairness, trust and transparency of ML systems, providing privacy and security on ML Systems); useful tools and programming languages for deploying ML systems; specific challenges relating to deploying reinforcement learning in ML systems
and performing continual learning and providing continual delivery in ML systems;
and finally data challenges for deployed ML systems.

Author Information

Alessandra Tosi (Mind Foundry)
Nathan Korda (Mind Foundry)
Neil Lawrence (University of Cambridge)

Neil Lawrence is the DeepMind Professor of Machine Learning at the University of Cambridge and a Senior AI Fellow at the Alan Turing Institute.

More from the Same Authors