Timezone: »
To communicate with new partners in new contexts, humans rapidly form new linguistic conventions. Recent language models trained with deep neural networks are able to comprehend and produce the existing conventions present in their training data, but are not able to flexibly and interactively adapt those conventions on the fly as humans do. We introduce a repeated reference task as a benchmark for models of adaptation in communication and propose a regularized continual learning framework that allows an artificial agent initialized with a generic language model to more accurately and efficiently understand their partner over time. We evaluate this framework through simulations on COCO and in real-time reference game experiments with human partners.
Author Information
Minae Kwon (Stanford University)
More from the Same Authors
-
2021 Poster: Targeted Data Acquisition for Evolving Negotiation Agents »
Minae Kwon · Siddharth Karamcheti · Mariano-Florentino Cuellar · Dorsa Sadigh -
2021 Spotlight: Targeted Data Acquisition for Evolving Negotiation Agents »
Minae Kwon · Siddharth Karamcheti · Mariano-Florentino Cuellar · Dorsa Sadigh -
2019 : Poster Session »
Ivana Balazevic · Minae Kwon · Benjamin Lengerich · Amir Asiaee · Alex Lambert · Wenyu Chen · Yiming Ding · Carlos Florensa · Joseph E Gaudio · Yesmina Jaafra · Boli Fang · Ruoxi Wang · Tian Li · SWAMINATHAN GURUMURTHY · Andy Yan · Kubra Cilingir · Vithursan (Vithu) Thangarasa · Alexander Li · Ryan Lowe