Timezone: »

 
Towards a Sustainable Food Supply Chain Powered by Artificial Intelligence
Volodymyr Kuleshov

Fri Jun 14 10:10 AM -- 10:20 AM (PDT) @

About 30-40% of food produced worldwide is wasted. This puts a severe strain on the environment and represents a $165B loss to the US economy. This paper explores how artificial intelligence can be used to automate decisions across the food supply chain in order to reduce waste and increase the quality and affordability of food. We focus our attention on supermarkets — combined with downstream consumer waste, these contribute to 40% of total US food losses — and we describe an intelligent decision support system for supermarket operators that optimizes purchasing decisions and minimizes losses. The core of our system is a model-based reinforcement learn- ing engine for perishable inventory management; in a real-world pilot with a US supermarket chain, our system reduced waste by up to 50%. We hope that this paper will bring the food waste problem to the attention of the broader machine learning research community.

Author Information

Volodymyr Kuleshov (Stanford University / Afresh)

More from the Same Authors

  • 2022 Poster: Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation »
    Volodymyr Kuleshov · Shachi Deshpande
  • 2022 Spotlight: Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation »
    Volodymyr Kuleshov · Shachi Deshpande
  • 2019 : Networking Lunch (provided) + Poster Session »
    Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki
  • 2019 Poster: Calibrated Model-Based Deep Reinforcement Learning »
    Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon
  • 2019 Oral: Calibrated Model-Based Deep Reinforcement Learning »
    Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon
  • 2018 Poster: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
    Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon
  • 2018 Oral: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
    Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon