Timezone: »
Author Information
Kay Wiese (Simon Fraser University)
Brandon Carter (MIT CSAIL)
Dan DeBlasio (Carnegie Mellon University)
Mohammad Hashir (Mila/UTK)
Rachel Chan (University of Toronto)
Matteo Manica (IBM Research)
Matteo is a Research Staff Member in Cognitive Health Care and Life Sciences at IBM Research Zürich. He's currently working on the development of multimodal deep learning models for drug discovery using chemical features and omic data. He also researches in multimodal learning techniques for the analysis of pediatric cancers in a H2020 EU project, iPC, with the aim of creating treatment models for patients. He received his degree in Mathematical Engineering from Politecnico di Milano in 2013. After getting his MSc he worked in a startup, Moxoff spa, as a software engineer and analyst for scientific computing. In 2019 he obtained his doctoral degree at the end of a joint PhD program between IBM Research and the Institute of Molecular Systems Biology, ETH Zürich, with a thesis on multimodal learning approaches for precision medicine.
Ali Oskooei (IBM Research)
Zhenqin Wu (Stanford University)
Karren Yang (Massachusetts Institute of Technology)
François FAGES (Inria Saclay Ile de France)
Ruishan Liu (Stanford University)
Nicasia Beebe-Wang (Paul G Allen School of Computer Science and Engineering, University of Washington)
Bryan He (Stanford University)
Jacopo Cirrone (NYU - Computer Science - Courant)
Pekka Marttinen (Aalto University)
Elior Rahmani (?UCL)
Harri Lähdesmäki (Aalto University)
Nikhil Yadala (Microsoft)
I work in the Bing web ranking algorithm team as Data Scientist. I am most interested in the applications of computer science and ML in specific to computational biology and genetics. My long term goals include contributing to healthy ageing research and develop drugs for increased health span.
Andreea-Ioana Deac (University of Cambridge)
Ava Soleimany (Massachusetts Institute of Technology (MIT))
Mansi Ranjit Mane (Walmart Labs)
Jason Ernst (UCLA)
Joseph Paul Cohen (Montreal Institute for Learning Algorithms ShortScience.org)
Joel Mathew (University of Southern California/Information Sciences Institute)
Vishal Agarwal (Indian Institute of Technology Guwahati)
AN ZHENG (University of California San Diego)
I am a PhD student in Computer Science at UC San Diego under supervision of Dr. Melissa Gymrek and Dr. Hao Su. I am interested in neural network interpretability and applied machine learning. My current research work focuses on topics including: understanding complex genetic traits with the help of deep learning methods, and designing reliable interpretation methods to explain decisions made by neural networks. LinkedIn: https://www.linkedin.com/in/anzheng25/
More from the Same Authors
-
2020 : (#101 / Sess. 1) Graph neural induction of value iteration »
Andreea-Ioana Deac -
2021 : Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays »
Joseph Paul Cohen · Rupert Brooks · Evan Zucker · Anuj Pareek · Lungren Matthew · Akshay Chaudhari -
2021 : Deep neural networks identify sequence context features predictive of transcription factor binding »
AN ZHENG · AN ZHENG -
2021 : DynaMorph: self-supervised learning of morphodynamic states of live cells »
Zhenqin Wu · Zhenqin Wu -
2021 : Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays »
Joseph Paul Cohen · Rupert Brooks · Evan Zucker · Anuj Pareek · Lungren Matthew · Akshay Chaudhari -
2022 : SPACE-GM: geometric deep learning of disease-associated microenvironments from multiplex spatial protein profiles »
Zhenqin Wu -
2022 : SPACE-GM: geometric deep learning of disease-associated microenvironments from multiplex spatial protein profiles. »
Zhenqin Wu -
2022 : Data Sculpting: Interpretable Algorithm for End-to-End Cohort Selection »
Ruishan Liu · James Zou -
2021 : Highlight 7 | Deep neural networks identify sequence context features predictive of transcription factor binding »
Workshop CompBio · AN ZHENG -
2021 Poster: Continuous-time Model-based Reinforcement Learning »
Cagatay Yildiz · Markus Heinonen · Harri Lähdesmäki -
2021 Spotlight: Continuous-time Model-based Reinforcement Learning »
Cagatay Yildiz · Markus Heinonen · Harri Lähdesmäki -
2021 Poster: Marginal Contribution Feature Importance - an Axiomatic Approach for Explaining Data »
Amnon Catav · Boyang Fu · Yazeed Zoabi · Ahuva Weiss Meilik · Noam Shomron · Jason Ernst · Sriram Sankararaman · Ran Gilad-Bachrach -
2021 Spotlight: Marginal Contribution Feature Importance - an Axiomatic Approach for Explaining Data »
Amnon Catav · Boyang Fu · Yazeed Zoabi · Ahuva Weiss Meilik · Noam Shomron · Jason Ernst · Sriram Sankararaman · Ran Gilad-Bachrach -
2021 Poster: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning »
Karsten Roth · Timo Milbich · Bjorn Ommer · Joseph Paul Cohen · Marzyeh Ghassemi -
2021 Spotlight: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning »
Karsten Roth · Timo Milbich · Bjorn Ommer · Joseph Paul Cohen · Marzyeh Ghassemi -
2020 : Contributed Talk 4: A Benchmark of Medical Out of Distribution Detection »
Joseph Paul Cohen -
2020 : Opening Remarks »
Petar Veličković · Andreea-Ioana Deac -
2020 Poster: Revisiting Training Strategies and Generalization Performance in Deep Metric Learning »
Karsten Roth · Timo Milbich · Samrath Sinha · Prateek Gupta · Bjorn Ommer · Joseph Paul Cohen -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2018 Poster: Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions »
Karren Yang · Abigail Katoff · Caroline Uhler -
2018 Oral: Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions »
Karren Yang · Abigail Katoff · Caroline Uhler -
2018 Poster: Learning unknown ODE models with Gaussian processes »
Markus Heinonen · Cagatay Yildiz · Henrik Mannerström · Jukka Intosalmi · Harri Lähdesmäki -
2018 Oral: Learning unknown ODE models with Gaussian processes »
Markus Heinonen · Cagatay Yildiz · Henrik Mannerström · Jukka Intosalmi · Harri Lähdesmäki -
2017 : The effects of memory replay in reinforcement learning »
Ruishan Liu -
2017 Poster: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re -
2017 Talk: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re