Timezone: »
Abstract: I'll present a brief overview of some recent work on reinforcement learning motivated by practical issues that arise in the application of RL to online, user-facing applications like recommender systems. These include stochastic action sets, long-term cumulative effects, and combinatorial action spaces. I'll provide some detail on the last of these, describing SlateQ, a novel decomposition technique that allows value-based RL (e.g., Q-learning) in slate-based recommender to scale to commercial production systems, and briefly describe both small-scale simulation and a large-scale experiment with YouTube.
Bio: Craig is Principal Scientist at Google, working on various aspects of decision making under uncertainty (e.g., reinforcement learning, Markov decision processes, user modeling, preference modeling and elicitation) and recommender systems. He received his Ph.D. from the University of Toronto in 1992, and has held positions at the University of British Columbia, University of Toronto, CombineNet, and co-founded Granata Decision Systems.
Craig was Editor-in-Chief of JAIR; Associate Editor with ACM TEAC, JAIR, JMLR, and JAAMAS; Program Chair for IJCAI-09 and UAI-2000. Boutilier is a Fellow of the Royal Society of Canada (RSC), the Association for Computing Machinery (ACM) and the Association for the Advancement of Artificial Intelligence (AAAI). He was recipient of the 2018 ACM/SIGAI Autonomous Agents Research Award and a Tier I Canada Research Chair; and has received (with great co-authors) a number of Best Paper awards including: the 2009 IJCAI-JAIR Best Paper Prize; the 2014 AIJ Prominent Paper Award; and the 2018 NeurIPS Best Paper Award.
Author Information
Craig Boutilier (Google)
More from the Same Authors
-
2023 : Preference Elicitation for Music Recommendations »
Ofer Meshi · Jon Feldman · Li Yang · Ben Scheetz · Yanli Cai · Mohammad Hossein Bateni · Corbyn Salisbury · Vikram Aggarwal · Craig Boutilier -
2023 Poster: Reinforcement Learning with History Dependent Dynamic Contexts »
Guy Tennenholtz · Nadav Merlis · Lior Shani · Martin Mladenov · Craig Boutilier -
2022 : Modeling Recommender Ecosystems - Some Considerations »
Craig Boutilier -
2021 Poster: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Spotlight: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2020 Poster: ConQUR: Mitigating Delusional Bias in Deep Q-Learning »
DiJia Su · Jayden Ooi · Tyler Lu · Dale Schuurmans · Craig Boutilier -
2020 Poster: Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach »
Martin Mladenov · Elliot Creager · Omer Ben-Porat · Kevin Swersky · Richard Zemel · Craig Boutilier -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : posters »
Zhengxing Chen · Juan Jose Garau Luis · Ignacio Albert Smet · Aditya Modi · Sabina Tomkins · Riley Simmons-Edler · Hongzi Mao · Alexander Irpan · Hao Lu · Rose Wang · Subhojyoti Mukherjee · Aniruddh Raghu · Syed Arbab Mohd Shihab · Byung Hoon Ahn · Rasool Fakoor · Pratik Chaudhari · Elena Smirnova · Min-hwan Oh · Xiaocheng Tang · Tony Qin · Qingyang Li · Marc Brittain · Ian Fox · Supratik Paul · Xiaofeng Gao · Yinlam Chow · Gabriel Dulac-Arnold · Ofir Nachum · Nikos Karampatziakis · Bharathan Balaji · Supratik Paul · Ali Davody · Djallel Bouneffouf · Himanshu Sahni · Soo Kim · Andrey Kolobov · Alexander Amini · Yao Liu · Xinshi Chen · · Craig Boutilier