Timezone: »
Speaker: Lenka Zdeborova (CEA/SACLAY)
Abstract: A key question of current interest is: How are properties of optimization and sampling algorithms influenced by the properties of the loss function in noisy high-dimensional non-convex settings? Answering this question for deep neural networks is a landmark goal of many ongoing works. In this talk I will answer this question in unprecedented detail for the spiked matrix-tensor model. Information theoretic limits, and Kac-Rice analysis of the loss landscapes, will be compared to the analytically studied performance of message passing algorithms, of the Langevin dynamics and of the gradient flow. Several rather non-intuitive results will be unveiled and explained.
Author Information
Lenka Zdeborova (CNRS)
More from the Same Authors
-
2023 Poster: Bayes-optimal Learning of Deep Random Networks of Extensive-width »
Hugo Cui · FLORENT KRZAKALA · Lenka Zdeborova -
2023 Oral: Bayes-optimal Learning of Deep Random Networks of Extensive-width »
Hugo Cui · FLORENT KRZAKALA · Lenka Zdeborova -
2021 : Overparametrization: Insights from solvable models »
Lenka Zdeborova -
2021 Poster: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Spotlight: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2020 Poster: Generalisation error in learning with random features and the hidden manifold model »
Federica Gerace · Bruno Loureiro · Florent Krzakala · Marc Mezard · Lenka Zdeborova -
2020 Poster: The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture »
Francesca Mignacco · Florent Krzakala · Yue Lu · Pierfrancesco Urbani · Lenka Zdeborova -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 Poster: Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models »
Stefano Sarao Mannelli · Florent Krzakala · Pierfrancesco Urbani · Lenka Zdeborova -
2019 Oral: Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models »
Stefano Sarao Mannelli · Florent Krzakala · Pierfrancesco Urbani · Lenka Zdeborova