Timezone: »
Spotlight
Tyler Scott · Kiran Koshy · Jonathan Aigrain · Rene Bidart · Priyadarshini Panda · Dian Ang Yap · Yaniv Yacoby · Raphael Gontijo Lopes · Alberto Marchisio · Erik Englesson · Wanqian Yang · Moritz Graule · Yi Sun · Daniel Kang · Mike Dusenberry · Min Du · Hartmut Maennel · Kunal Menda · Vineet Edupuganti · Luke Metz · David Stutz · Vignesh Srinivasan · Timo Sämann · Vineeth N Balasubramanian · Sina Mohseni · Rob Cornish · Judith Butepage · Zhangyang Wang · Bai Li · Bo Han · Honglin Li · Maksym Andriushchenko · Lukas Ruff · Meet P. Vadera · Yaniv Ovadia · Sunil Thulasidasan · Disi Ji · Gang Niu · Saeed Mahloujifar · Aviral Kumar · SANGHYUK CHUN · Dong Yin · Joyce Xu Xu · Hugo Gomes · Raanan Rohekar
Author Information
Tyler Scott (University of Colorado, Boulder)
Kiran Koshy (University of Illinois at Urbana-Champaign)
Jonathan Aigrain (AXA Services)
Rene Bidart (University of Waterloo)
Priyadarshini Panda (Purdue University)
Dian Ang Yap (Stanford University)
Yaniv Yacoby (Harvard University)
Raphael Gontijo Lopes (Google Brain)
Alberto Marchisio (Technische Universität Wien)
Erik Englesson (KTH Royal Institute of Technology)
Wanqian Yang (Harvard University)
Moritz Graule (Harvard University)
Yi Sun (Columbia University)
Daniel Kang (Stanford University)
Mike Dusenberry (Google Brain (AI Residency))
Min Du (UC Berkeley)
Hartmut Maennel (Google Switzerland)
Kunal Menda (Stanford University)
Vineet Edupuganti (Stanford University)
Luke Metz (Google Brain)
David Stutz (Max Planck Institute for Informatics)
Vignesh Srinivasan (Fraunhofer HHI)
Timo Sämann (Valeo Schalter und Sensoren GmbH)
Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad)
Sina Mohseni (Texas A&M University)
Rob Cornish (Oxford)
Judith Butepage (KTH - Royal Institute of Technology)
Zhangyang Wang (Texas A&M University)
Bai Li (Duke University)
Bo Han (RIKEN-AIP)
Honglin Li (University of Surrey)
Maksym Andriushchenko (Saarland / Tübingen University)
Lukas Ruff (TU Berlin)
Meet P. Vadera (University of Massachusetts Amherst)
Yaniv Ovadia (Google)
Sunil Thulasidasan (Los Alamos National Laboratory & University of Washington)
Disi Ji (UC, Irvine)
Gang Niu (RIKEN)

Gang Niu is currently an indefinite-term senior research scientist at RIKEN Center for Advanced Intelligence Project.
Saeed Mahloujifar (University of Virginia)
Aviral Kumar (UC Berkeley)
SANGHYUK CHUN (Naver corp.)
Dong Yin (UC Berkeley)
Joyce Xu Xu (Stanford University)
Hugo Gomes (Université Laval)
Raanan Rohekar (Intel AI Lab)
More from the Same Authors
-
2020 : One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL »
Saurabh Kumar · Aviral Kumar -
2021 : A Closer Look at the Adversarial Robustness of Information Bottleneck Models »
Iryna Korshunova · David Stutz · Alexander Alemi · Olivia Wiles · Sven Gowal -
2021 : Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan P. Adams · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Multi-Task Offline Reinforcement Learning with Conservative Data Sharing »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 : Multi-Task Offline Reinforcement Learning with Conservative Data Sharing »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2022 : When does dough become a bagel?Analyzing the remaining mistakes on ImageNet »
Vijay Vasudevan · Benjamin Caine · Raphael Gontijo Lopes · Sara Fridovich-Keil · Rebecca Roelofs -
2022 : Discovered Policy Optimisation »
Christopher Lu · Jakub Grudzien Kuba · Alistair Letcher · Luke Metz · Christian Schroeder · Jakob Foerster -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2023 Poster: A modern look at the relationship between sharpness and generalization »
Maksym Andriushchenko · Francesco Croce · Maximilian Müller · Matthias Hein · Nicolas Flammarion -
2023 Poster: A Simple Zero-shot Prompt Weighting Technique to Improve Prompt Ensembling in Text-Image Models »
James Allingham · JIE REN · Michael Dusenberry · Jeremiah Liu · Xiuye Gu · Yin Cui · Dustin Tran · Balaji Lakshminarayanan -
2023 Poster: SGD with large step sizes learns sparse features »
Maksym Andriushchenko · Aditya Vardhan Varre · Loucas Pillaud-Vivien · Nicolas Flammarion -
2023 Poster: A Universal Unbiased Method for Classification from Aggregate Observations »
Zixi Wei · LEI FENG · Bo Han · Tongliang Liu · Gang Niu · Xiaofeng Zhu · Heng Tao Shen -
2023 Poster: Mitigating Memorization of Noisy Labels by Clipping the Model Prediction »
Hongxin Wei · HUIPING ZHUANG · RENCHUNZI XIE · LEI FENG · Gang Niu · Bo An · Yixuan Li -
2023 Poster: Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation »
Ruijiang Dong · Feng Liu · Haoang Chi · Tongliang Liu · Mingming Gong · Gang Niu · Masashi Sugiyama · Bo Han -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : HARNAS: Neural Architecture Search Jointly Optimizing for Hardware Efficiency and Adversarial Robustness of Convolutional and Capsule Networks »
Alberto Marchisio · Vojtech Mrazek · Andrea Massa · Beatrice Bussolino · Maurizio Martina · Muhammad Shafique -
2022 : Contributed Talk 1: When does dough become a bagel?Analyzing the remaining mistakes on ImageNet »
Vijay Vasudevan · Benjamin Caine · Raphael Gontijo Lopes · Sara Fridovich-Keil · Rebecca Roelofs -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time »
Mitchell Wortsman · Gabriel Ilharco · Samir Gadre · Rebecca Roelofs · Raphael Gontijo Lopes · Ari Morcos · Hongseok Namkoong · Ali Farhadi · Yair Carmon · Simon Kornblith · Ludwig Schmidt -
2022 Poster: Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Xinyang Geng · Aviral Kumar · Sergey Levine -
2022 Poster: How to Leverage Unlabeled Data in Offline Reinforcement Learning »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Chelsea Finn · Sergey Levine -
2022 Poster: Dataset Condensation with Contrastive Signals »
Saehyung Lee · SANGHYUK CHUN · Sangwon Jung · Sangdoo Yun · Sungroh Yoon -
2022 Spotlight: How to Leverage Unlabeled Data in Offline Reinforcement Learning »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Chelsea Finn · Sergey Levine -
2022 Spotlight: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time »
Mitchell Wortsman · Gabriel Ilharco · Samir Gadre · Rebecca Roelofs · Raphael Gontijo Lopes · Ari Morcos · Hongseok Namkoong · Ali Farhadi · Yair Carmon · Simon Kornblith · Ludwig Schmidt -
2022 Spotlight: Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Xinyang Geng · Aviral Kumar · Sergey Levine -
2022 Spotlight: Dataset Condensation with Contrastive Signals »
Saehyung Lee · SANGHYUK CHUN · Sangwon Jung · Sangdoo Yun · Sungroh Yoon -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Towards Understanding Sharpness-Aware Minimization »
Maksym Andriushchenko · Nicolas Flammarion -
2022 Spotlight: Towards Understanding Sharpness-Aware Minimization »
Maksym Andriushchenko · Nicolas Flammarion -
2022 Poster: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Poster: Matching Learned Causal Effects of Neural Networks with Domain Priors »
Sai Srinivas Kancheti · Gowtham Reddy Abbavaram · Vineeth N Balasubramanian · Amit Sharma -
2022 Spotlight: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Spotlight: Matching Learned Causal Effects of Neural Networks with Domain Priors »
Sai Srinivas Kancheti · Gowtham Reddy Abbavaram · Vineeth N Balasubramanian · Amit Sharma -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Spotlight »
Zhiwei (Tony) Qin · Xianyuan Zhan · Meng Qi · Ruihan Yang · Philip Ball · Hamsa Bastani · Yao Liu · Xiuwen Wang · Haoran Xu · Tony Z. Zhao · Lili Chen · Aviral Kumar -
2021 Poster: Learn2Hop: Learned Optimization on Rough Landscapes »
Amil Merchant · Luke Metz · Samuel Schoenholz · Ekin Dogus Cubuk -
2021 Poster: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection »
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama -
2021 Poster: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learn2Hop: Learned Optimization on Rough Landscapes »
Amil Merchant · Luke Metz · Samuel Schoenholz · Ekin Dogus Cubuk -
2021 Spotlight: CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection »
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama -
2021 Spotlight: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Spotlight: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Poster: Conservative Objective Models for Effective Offline Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · Xinyang Geng · Sergey Levine -
2021 Poster: Transfer-Based Semantic Anomaly Detection »
Lucas Deecke · Lukas Ruff · Robert Vandermeulen · Hakan Bilen -
2021 Poster: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Poster: Pointwise Binary Classification with Pairwise Confidence Comparisons »
Lei Feng · Senlin Shu · Nan Lu · Bo Han · Miao Xu · Gang Niu · Bo An · Masashi Sugiyama -
2021 Poster: Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification »
Nan Lu · Shida Lei · Gang Niu · Issei Sato · Masashi Sugiyama -
2021 Poster: Learning from Similarity-Confidence Data »
Yuzhou Cao · Lei Feng · Yitian Xu · Bo An · Gang Niu · Masashi Sugiyama -
2021 Poster: On Linear Identifiability of Learned Representations »
Geoffrey Roeder · Luke Metz · Durk Kingma -
2021 Poster: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Poster: Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization »
Yivan Zhang · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning from Similarity-Confidence Data »
Yuzhou Cao · Lei Feng · Yitian Xu · Bo An · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Pointwise Binary Classification with Pairwise Confidence Comparisons »
Lei Feng · Senlin Shu · Nan Lu · Bo Han · Miao Xu · Gang Niu · Bo An · Masashi Sugiyama -
2021 Spotlight: Conservative Objective Models for Effective Offline Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · Xinyang Geng · Sergey Levine -
2021 Spotlight: Transfer-Based Semantic Anomaly Detection »
Lucas Deecke · Lukas Ruff · Robert Vandermeulen · Hakan Bilen -
2021 Spotlight: Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification »
Nan Lu · Shida Lei · Gang Niu · Issei Sato · Masashi Sugiyama -
2021 Oral: Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization »
Yivan Zhang · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Spotlight: On Linear Identifiability of Learned Representations »
Geoffrey Roeder · Luke Metz · Durk Kingma -
2021 Oral: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Poster: Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies »
Paul Vicol · Luke Metz · Jascha Sohl-Dickstein -
2021 Oral: Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies »
Paul Vicol · Luke Metz · Jascha Sohl-Dickstein -
2021 Poster: Large-Margin Contrastive Learning with Distance Polarization Regularizer »
Shuo Chen · Gang Niu · Chen Gong · Jun Li · Jian Yang · Masashi Sugiyama -
2021 Spotlight: Large-Margin Contrastive Learning with Distance Polarization Regularizer »
Shuo Chen · Gang Niu · Chen Gong · Jun Li · Jian Yang · Masashi Sugiyama -
2020 : Contributed Talk 1: Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks »
David Stutz -
2020 Poster: Do We Need Zero Training Loss After Achieving Zero Training Error? »
Takashi Ishida · Ikko Yamane · Tomoya Sakai · Gang Niu · Masashi Sugiyama -
2020 Poster: Progressive Identification of True Labels for Partial-Label Learning »
Jiaqi Lv · Miao Xu · LEI FENG · Gang Niu · Xin Geng · Masashi Sugiyama -
2020 Poster: Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows »
Rob Cornish · Anthony Caterini · George Deligiannidis · Arnaud Doucet -
2020 Poster: Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors »
Mike Dusenberry · Ghassen Jerfel · Yeming Wen · Yian Ma · Jasper Snoek · Katherine Heller · Balaji Lakshminarayanan · Dustin Tran -
2020 Poster: Stochastic Gradient and Langevin Processes »
Xiang Cheng · Dong Yin · Peter Bartlett · Michael Jordan -
2020 Poster: SIGUA: Forgetting May Make Learning with Noisy Labels More Robust »
Bo Han · Gang Niu · Xingrui Yu · QUANMING YAO · Miao Xu · Ivor Tsang · Masashi Sugiyama -
2020 Poster: Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels »
Yu-Ting Chou · Gang Niu · Hsuan-Tien Lin · Masashi Sugiyama -
2020 Poster: Learning De-biased Representations with Biased Representations »
Hyojin Bahng · SANGHYUK CHUN · Sangdoo Yun · Jaegul Choo · Seong Joon Oh -
2020 Poster: Attacks Which Do Not Kill Training Make Adversarial Learning Stronger »
Jingfeng Zhang · Xilie Xu · Bo Han · Gang Niu · Lizhen Cui · Masashi Sugiyama · Mohan Kankanhalli -
2020 Poster: Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks »
David Stutz · Matthias Hein · Bernt Schiele -
2020 : Engagement and Solidarity with Global Queer Communities »
Raphael Gontijo Lopes · Bisi Alimi · Faris Gezahegn · Ida Momennejad · Tan Zhi-Xuan -
2020 Poster: Variational Imitation Learning with Diverse-quality Demonstrations »
Voot Tangkaratt · Bo Han · Mohammad Emtiyaz Khan · Masashi Sugiyama -
2020 Poster: Learning with Multiple Complementary Labels »
LEI FENG · Takuo Kaneko · Bo Han · Gang Niu · Bo An · Masashi Sugiyama -
2020 Poster: Searching to Exploit Memorization Effect in Learning with Noisy Labels »
QUANMING YAO · Hansi Yang · Bo Han · Gang Niu · James Kwok -
2020 Affinity Workshop: Queer in AI »
ST John · William Agnew · Anja Meunier · Alex Markham · Manu Saraswat · Andrew McNamara · Raphael Gontijo Lopes -
2019 : poster session I »
Nicholas Rhinehart · Yunhao Tang · Vinay Prabhu · Dian Ang Yap · Alexander Wang · Marc Finzi · Manoj Kumar · You Lu · Abhishek Kumar · Qi Lei · Michael Przystupa · Nicola De Cao · Polina Kirichenko · Pavel Izmailov · Andrew Wilson · Jakob Kruse · Diego Mesquita · Mario Lezcano Casado · Thomas Müller · Keir Simmons · Andrei Atanov -
2019 : Submodular Batch Selection for Training Deep Neural Networks »
Vineeth N Balasubramanian -
2019 : Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem »
Maksym Andriushchenko -
2019 Poster: Classification from Positive, Unlabeled and Biased Negative Data »
Yu-Guan Hsieh · Gang Niu · Masashi Sugiyama -
2019 Poster: Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning »
Dong Yin · Yudong Chen · Kannan Ramchandran · Peter Bartlett -
2019 Poster: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2019 Poster: Understanding and correcting pathologies in the training of learned optimizers »
Luke Metz · Niru Maheswaranathan · Jeremy Nixon · Daniel Freeman · Jascha Sohl-Dickstein -
2019 Poster: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Poster: Neural Network Attributions: A Causal Perspective »
Aditya Chattopadhyay · Piyushi Manupriya · Anirban Sarkar · Vineeth N Balasubramanian -
2019 Poster: Complementary-Label Learning for Arbitrary Losses and Models »
Takashi Ishida · Gang Niu · Aditya Menon · Masashi Sugiyama -
2019 Poster: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Oral: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Oral: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2019 Oral: Understanding and correcting pathologies in the training of learned optimizers »
Luke Metz · Niru Maheswaranathan · Jeremy Nixon · Daniel Freeman · Jascha Sohl-Dickstein -
2019 Oral: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Oral: Complementary-Label Learning for Arbitrary Losses and Models »
Takashi Ishida · Gang Niu · Aditya Menon · Masashi Sugiyama -
2019 Oral: Classification from Positive, Unlabeled and Biased Negative Data »
Yu-Guan Hsieh · Gang Niu · Masashi Sugiyama -
2019 Oral: Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning »
Dong Yin · Yudong Chen · Kannan Ramchandran · Peter Bartlett -
2019 Oral: Neural Network Attributions: A Causal Perspective »
Aditya Chattopadhyay · Piyushi Manupriya · Anirban Sarkar · Vineeth N Balasubramanian -
2019 Poster: How does Disagreement Help Generalization against Label Corruption? »
Xingrui Yu · Bo Han · Jiangchao Yao · Gang Niu · Ivor Tsang · Masashi Sugiyama -
2019 Poster: Data Poisoning Attacks in Multi-Party Learning »
Saeed Mahloujifar · Mohammad Mahmoody · Ameer Mohammed -
2019 Poster: Plug-and-Play Methods Provably Converge with Properly Trained Denoisers »
Ernest Ryu · Jialin Liu · Sicheng Wang · Xiaohan Chen · Zhangyang Wang · Wotao Yin -
2019 Oral: How does Disagreement Help Generalization against Label Corruption? »
Xingrui Yu · Bo Han · Jiangchao Yao · Gang Niu · Ivor Tsang · Masashi Sugiyama -
2019 Oral: Plug-and-Play Methods Provably Converge with Properly Trained Denoisers »
Ernest Ryu · Jialin Liu · Sicheng Wang · Xiaohan Chen · Zhangyang Wang · Wotao Yin -
2019 Oral: Data Poisoning Attacks in Multi-Party Learning »
Saeed Mahloujifar · Mohammad Mahmoody · Ameer Mohammed -
2019 Poster: Rademacher Complexity for Adversarially Robust Generalization »
Dong Yin · Kannan Ramchandran · Peter Bartlett -
2019 Poster: Combating Label Noise in Deep Learning using Abstention »
Sunil Thulasidasan · Tanmoy Bhattacharya · Jeff Bilmes · Gopinath Chennupati · Jamal Mohd-Yusof -
2019 Poster: Diagnosing Bottlenecks in Deep Q-learning Algorithms »
Justin Fu · Aviral Kumar · Matthew Soh · Sergey Levine -
2019 Oral: Rademacher Complexity for Adversarially Robust Generalization »
Dong Yin · Kannan Ramchandran · Peter Bartlett -
2019 Oral: Diagnosing Bottlenecks in Deep Q-learning Algorithms »
Justin Fu · Aviral Kumar · Matthew Soh · Sergey Levine -
2019 Oral: Combating Label Noise in Deep Learning using Abstention »
Sunil Thulasidasan · Tanmoy Bhattacharya · Jeff Bilmes · Gopinath Chennupati · Jamal Mohd-Yusof -
2018 Poster: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Poster: Classification from Pairwise Similarity and Unlabeled Data »
Han Bao · Gang Niu · Masashi Sugiyama -
2018 Poster: Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions »
Junru Wu · Yue Wang · Zhenyu Wu · Zhangyang Wang · Ashok Veeraraghavan · Yingyan Lin -
2018 Oral: Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions »
Junru Wu · Yue Wang · Zhenyu Wu · Zhangyang Wang · Ashok Veeraraghavan · Yingyan Lin -
2018 Oral: Classification from Pairwise Similarity and Unlabeled Data »
Han Bao · Gang Niu · Masashi Sugiyama -
2018 Oral: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Poster: Does Distributionally Robust Supervised Learning Give Robust Classifiers? »
Weihua Hu · Gang Niu · Issei Sato · Masashi Sugiyama -
2018 Poster: Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates »
Dong Yin · Yudong Chen · Kannan Ramchandran · Peter Bartlett -
2018 Oral: Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates »
Dong Yin · Yudong Chen · Kannan Ramchandran · Peter Bartlett -
2018 Oral: Does Distributionally Robust Supervised Learning Give Robust Classifiers? »
Weihua Hu · Gang Niu · Issei Sato · Masashi Sugiyama -
2018 Poster: Deep One-Class Classification »
Lukas Ruff · Nico Görnitz · Lucas Deecke · Shoaib Ahmed Siddiqui · Robert Vandermeulen · Alexander Binder · Emmanuel Müller · Marius Kloft -
2018 Oral: Deep One-Class Classification »
Lukas Ruff · Nico Görnitz · Lucas Deecke · Shoaib Ahmed Siddiqui · Robert Vandermeulen · Alexander Binder · Emmanuel Müller · Marius Kloft -
2017 Poster: Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data »
Tomoya Sakai · Marthinus C du Plessis · Gang Niu · Masashi Sugiyama -
2017 Talk: Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data »
Tomoya Sakai · Marthinus C du Plessis · Gang Niu · Masashi Sugiyama