Timezone: »
Author Information
Nicholas Rhinehart (Carnegie Mellon University)
Nick Rhinehart is a Ph.D. student at Carnegie Mellon University, focusing on understanding, forecasting, and controlling the behavior of agents through computer vision and machine learning. He is particularly interested in systems that learn to reason about the future. He has researched with Sergey Levine at UC Berkeley, Paul Vernaza at N.E.C. Labs, and Drew Bagnell at Uber ATG. His First-Person Forecasting work received the Marr Prize (Best Paper) Honorable Mention Award at ICCV 2017. Nick co-organized Tutorial on Inverse RL for Computer Vision at CVPR 2018 and is the primary organizer of ICML 2019 Workshop on Imitation, Intent, and Interaction.
Yunhao Tang (Columbia University)
Vinay Prabhu (UnifyID AI Labs)
Dian Ang Yap (Stanford University)
Alexander Wang (Stanford University)
Marc Finzi (cornell)
Manoj Kumar (Google Brain)
You Lu (Virginia Tech)
Abhishek Kumar (Google)
Qi Lei (University of Texas at Austin)
Michael Przystupa (University of British Columbia)
Nicola De Cao (University of Amsterdam)
Polina Kirichenko (Cornell)
Pavel Izmailov (CORNELL UNIVERSITY)
Andrew Wilson (Cornell University)

Andrew Gordon Wilson is faculty in the Courant Institute and Center for Data Science at NYU. His interests include probabilistic modelling, Gaussian processes, Bayesian statistics, physics inspired machine learning, and loss surfaces and generalization in deep learning. His webpage is https://cims.nyu.edu/~andrewgw.
Jakob Kruse (Heidelberg University)
Diego Mesquita (Aalto University)
Mario Lezcano Casado (Univeristy of Oxford)
Thomas Müller (ETH Zürich)
Keir Simmons (Ascent Robotics)
Andrei Atanov (National Research University Higher School of Economics)
More from the Same Authors
-
2021 : Task-agnostic Continual Learning with Hybrid Probabilistic Models »
Polina Kirichenko -
2021 : Marginalized Operators for Off-Policy Reinforcement Learning »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 : Intrinsic Control of Variational Beliefs in Dynamic Partially-Observed Visual Environments »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 : Explore and Control with Adversarial Surprise »
Arnaud Fickinger · Natasha Jaques · Samyak Parajuli · Michael Chang · Nicholas Rhinehart · Glen Berseth · Stuart Russell · Sergey Levine -
2022 : How much Data is Augmentation Worth? »
Jonas Geiping · Gowthami Somepalli · Ravid Shwartz-Ziv · Andrew Wilson · Tom Goldstein · Micah Goldblum -
2022 : Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations »
Polina Kirichenko · Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2022 : On Feature Learning in the Presence of Spurious Correlations »
Pavel Izmailov · Polina Kirichenko · Nate Gruver · Andrew Wilson -
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 : Spotlights »
Pratyush Maini · JIVAT NEET KAUR · Anil Palepu · Polina Kirichenko · Revant Teotia -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Poster: Bayesian Model Selection, the Marginal Likelihood, and Generalization »
Sanae Lotfi · Pavel Izmailov · Gregory Benton · Micah Goldblum · Andrew Wilson -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Oral: Bayesian Model Selection, the Marginal Likelihood, and Generalization »
Sanae Lotfi · Pavel Izmailov · Gregory Benton · Micah Goldblum · Andrew Wilson -
2022 Poster: Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning »
Yunhao Tang -
2022 Spotlight: Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders »
Samuel Stanton · Wesley Maddox · Nate Gruver · Phillip Maffettone · Emily Delaney · Peyton Greenside · Andrew Wilson -
2022 Spotlight: Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning »
Yunhao Tang -
2022 Poster: Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes »
Gregory Benton · Wesley Maddox · Andrew Wilson -
2022 Poster: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2022 Poster: Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders »
Samuel Stanton · Wesley Maddox · Nate Gruver · Phillip Maffettone · Emily Delaney · Peyton Greenside · Andrew Wilson -
2022 Spotlight: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2022 Spotlight: Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes »
Gregory Benton · Wesley Maddox · Andrew Wilson -
2021 : Invited Talk 5: Applications of normalizing flows: semi-supervised learning, anomaly detection, and continual learning »
Polina Kirichenko -
2021 Poster: SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes »
Sanyam Kapoor · Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2021 Oral: SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes »
Sanyam Kapoor · Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2021 Poster: Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition »
Shengyang Sun · Jiaxin Shi · Andrew Wilson · Roger Grosse -
2021 Spotlight: Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition »
Shengyang Sun · Jiaxin Shi · Andrew Wilson · Roger Grosse -
2021 Poster: Implicit rate-constrained optimization of non-decomposable objectives »
Abhishek Kumar · Harikrishna Narasimhan · Andrew Cotter -
2021 Spotlight: Implicit rate-constrained optimization of non-decomposable objectives »
Abhishek Kumar · Harikrishna Narasimhan · Andrew Cotter -
2021 Poster: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Poster: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Poster: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Oral: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Poster: What Are Bayesian Neural Network Posteriors Really Like? »
Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson -
2021 Poster: Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling »
Gregory Benton · Wesley Maddox · Sanae Lotfi · Andrew Wilson -
2021 Spotlight: Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling »
Gregory Benton · Wesley Maddox · Sanae Lotfi · Andrew Wilson -
2021 Oral: What Are Bayesian Neural Network Posteriors Really Like? »
Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson -
2020 Poster: Monte-Carlo Tree Search as Regularized Policy Optimization »
Jean-Bastien Grill · Florent Altché · Yunhao Tang · Thomas Hubert · Michal Valko · Ioannis Antonoglou · Remi Munos -
2020 Poster: SGD Learns One-Layer Networks in WGANs »
Qi Lei · Jason Lee · Alexandros Dimakis · Constantinos Daskalakis -
2020 Poster: Semi-Supervised Learning with Normalizing Flows »
Pavel Izmailov · Polina Kirichenko · Marc Finzi · Andrew Wilson -
2020 Poster: Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? »
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal -
2020 Poster: Learning to Score Behaviors for Guided Policy Optimization »
Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Krzysztof Choromanski · Anna Choromanska · Michael Jordan -
2020 Poster: Randomly Projected Additive Gaussian Processes for Regression »
Ian Delbridge · David S Bindel · Andrew Wilson -
2020 Poster: Reinforcement Learning for Integer Programming: Learning to Cut »
Yunhao Tang · Shipra Agrawal · Yuri Faenza -
2020 Poster: Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data »
Marc Finzi · Samuel Stanton · Pavel Izmailov · Andrew Wilson -
2020 Poster: Taylor Expansion Policy Optimization »
Yunhao Tang · Michal Valko · Remi Munos -
2020 Poster: On Implicit Regularization in $\beta$-VAEs »
Abhishek Kumar · Ben Poole -
2020 Tutorial: Bayesian Deep Learning and a Probabilistic Perspective of Model Construction »
Andrew Wilson -
2019 : Poster spotlights #3 »
Sumit Kumar · Nicola De Cao · Benson Chen -
2019 Workshop: ICML Workshop on Imitation, Intent, and Interaction (I3) »
Nicholas Rhinehart · Sergey Levine · Chelsea Finn · He He · Ilya Kostrikov · Justin Fu · Siddharth Reddy -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Subspace Inference for Bayesian Deep Learning »
Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2019 : Spotlight »
Tyler Scott · Kiran Koshy · Jonathan Aigrain · Rene Bidart · Priyadarshini Panda · Dian Ang Yap · Yaniv Yacoby · Raphael Gontijo Lopes · Alberto Marchisio · Erik Englesson · Wanqian Yang · Moritz Graule · Yi Sun · Daniel Kang · Mike Dusenberry · Min Du · Hartmut Maennel · Kunal Menda · Vineet Edupuganti · Luke Metz · David Stutz · Vignesh Srinivasan · Timo Sämann · Vineeth N Balasubramanian · Sina Mohseni · Rob Cornish · Judith Butepage · Zhangyang Wang · Bai Li · Bo Han · Honglin Li · Maksym Andriushchenko · Lukas Ruff · Meet P. Vadera · Yaniv Ovadia · Sunil Thulasidasan · Disi Ji · Gang Niu · Saeed Mahloujifar · Aviral Kumar · SANGHYUK CHUN · Dong Yin · Joyce Xu Xu · Hugo Gomes · Raanan Rohekar -
2019 Poster: Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group »
Mario Lezcano Casado · David Martínez-Rubio -
2019 Poster: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Oral: Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group »
Mario Lezcano Casado · David Martínez-Rubio -
2019 Oral: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Poster: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2019 Oral: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2018 Poster: Constant-Time Predictive Distributions for Gaussian Processes »
Geoff Pleiss · Jacob Gardner · Kilian Weinberger · Andrew Wilson -
2018 Oral: Constant-Time Predictive Distributions for Gaussian Processes »
Geoff Pleiss · Jacob Gardner · Kilian Weinberger · Andrew Wilson -
2018 Poster: Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization »
Jiong Zhang · Qi Lei · Inderjit Dhillon -
2018 Oral: Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization »
Jiong Zhang · Qi Lei · Inderjit Dhillon -
2017 Poster: Gradient Coding: Avoiding Stragglers in Distributed Learning »
Rashish Tandon · Qi Lei · Alexandros Dimakis · Nikos Karampatziakis -
2017 Talk: Gradient Coding: Avoiding Stragglers in Distributed Learning »
Rashish Tandon · Qi Lei · Alexandros Dimakis · Nikos Karampatziakis -
2017 Poster: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar -
2017 Talk: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar