Analyzing Federated Learning through an Adversarial Lens
Arjun Nitin Bhagoji · Supriyo Chakraborty · Prateek Mittal · Seraphin Calo

Wed Jun 12th 04:30 -- 04:35 PM @ Seaside Ballroom

Federated learning distributes model training among a multitude of agents, who, guided by privacy concerns, perform training using their local data but share only model parameter updates, for iterative aggregation at the server to train an overall global model. In this work, we explore how the federated learning setting gives rise to a new threat, namely model poisoning, which differs from traditional data poisoning. Model poisoning is carried out by an adversary controlling a small number of malicious agents (usually 1) with the aim of causing the global model to misclassify a set of chosen inputs with high confidence. We explore a number of strategies to carry out this attack on deep neural networks, starting with targeted model poisoning using a simple boosting of the malicious agent’s update to overcome the effects of other agents. We also propose two critical notions of stealth to detect malicious updates. We bypass these by including them in the adversarial objective to carry out stealthy model poisoning. We improve its stealth with the use of an alternating minimization strategy which alternately optimizes for stealth and the adversarial objective. We also empirically demonstrate that Byzantine-resilient aggregation strategies are not robust to our attacks. Our results indicate that highly constrained adversaries can carry out model poisoning attacks while maintaining stealth, thus highlighting the vulnerability of the federated learning setting and the need to develop effective defense strategies.

Author Information

Arjun Nitin Bhagoji (Princeton University)
Supriyo Chakraborty (IBM T. J. Watson Research Center)
Prateek Mittal (Princeton University)
Seraphin Calo (IBM Research)

Related Events (a corresponding poster, oral, or spotlight)