Timezone: »
We propose a targeted communication architecture for multi-agent reinforcement learning, where agents learn both \emph{what} messages to send and \emph{whom} to address them to while performing cooperative tasks in partially-observable environments. This targeting behavior is learnt solely from downstream task-specific reward without any communication supervision. We additionally augment this with a multi-round communication approach where agents coordinate via multiple rounds of communication before taking actions in the environment.
We evaluate our approach on a diverse set of cooperative multi-agent tasks, of varying difficulties, with varying number of agents, in a variety of environments ranging from 2D grid layouts of shapes and simulated traffic junctions to 3D indoor environments, and demonstrate the benefits of targeted and multi-round communication. Moreover, we show that the targeted communication strategies learned by agents are interpretable and intuitive.
Finally, we show that our architecture can be easily extended to mixed and competitive environments, leading to improved performance and sample complexity over recent state-of-the-art approaches.
Author Information
Abhishek Das (Georgia Tech)
Theophile Gervet (Carnegie Mellon University)
Joshua Romoff (McGill University)
Dhruv Batra (Georgia Institute of Technology / Facebook AI Research)
Devi Parikh (Georgia Tech & Facebook AI Research)
Michael Rabbat (Facebook)
Joelle Pineau (Facebook)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: TarMAC: Targeted Multi-Agent Communication »
Fri. Jun 14th 01:30 -- 04:00 AM Room Pacific Ballroom #57
More from the Same Authors
-
2022 : Positive Unlabeled Contrastive Representation Learning »
Anish Acharya · Sujay Sanghavi · Li Jing · Bhargav Bhushanam · Michael Rabbat · Dhruv Choudhary · Inderjit Dhillon -
2023 Poster: Text-To-4D Dynamic Scene Generation »
Uriel Singer · Shelly Sheynin · Adam Polyak · Oron Ashual · Iurii Makarov · Filippos Kokkinos · Naman Goyal · Andrea Vedaldi · Devi Parikh · Justin Johnson · Yaniv Taigman -
2023 Poster: Adaptive Coordination in Social Embodied Rearrangement »
Andrew Szot · Unnat Jain · Dhruv Batra · Zsolt Kira · Ruta Desai · Akshara Rai -
2022 Workshop: Responsible Decision Making in Dynamic Environments »
Virginie Do · Thorsten Joachims · Alessandro Lazaric · Joelle Pineau · Matteo Pirotta · Harsh Satija · Nicolas Usunier -
2022 Poster: Federated Learning with Partial Model Personalization »
Krishna Pillutla · Kshitiz Malik · Abdel-rahman Mohamed · Michael Rabbat · Maziar Sanjabi · Lin Xiao -
2022 Poster: Robust Policy Learning over Multiple Uncertainty Sets »
Annie Xie · Shagun Sodhani · Chelsea Finn · Joelle Pineau · Amy Zhang -
2022 Spotlight: Robust Policy Learning over Multiple Uncertainty Sets »
Annie Xie · Shagun Sodhani · Chelsea Finn · Joelle Pineau · Amy Zhang -
2022 Spotlight: Federated Learning with Partial Model Personalization »
Krishna Pillutla · Kshitiz Malik · Abdel-rahman Mohamed · Michael Rabbat · Maziar Sanjabi · Lin Xiao -
2020 Poster: Probing Emergent Semantics in Predictive Agents via Question Answering »
Abhishek Das · Federico Carnevale · Hamza Merzic · Laura Rimell · Rosalia Schneider · Josh Abramson · Alden Hung · Arun Ahuja · Stephen Clark · Greg Wayne · Feilx Hill -
2020 Poster: On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings »
Mahmoud Assran · Michael Rabbat -
2019 : Forcing Vision + Language Models To Actually See, Not Just Talk »
Devi Parikh -
2019 Poster: Probabilistic Neural Symbolic Models for Interpretable Visual Question Answering »
Shanmukha Ramakrishna Vedantam · Karan Desai · Stefan Lee · Marcus Rohrbach · Dhruv Batra · Devi Parikh -
2019 Poster: Trainable Decoding of Sets of Sequences for Neural Sequence Models »
Ashwin Kalyan · Peter Anderson · Stefan Lee · Dhruv Batra -
2019 Oral: Probabilistic Neural Symbolic Models for Interpretable Visual Question Answering »
Shanmukha Ramakrishna Vedantam · Karan Desai · Stefan Lee · Marcus Rohrbach · Dhruv Batra · Devi Parikh -
2019 Oral: Trainable Decoding of Sets of Sequences for Neural Sequence Models »
Ashwin Kalyan · Peter Anderson · Stefan Lee · Dhruv Batra -
2019 Poster: Stochastic Gradient Push for Distributed Deep Learning »
Mahmoud Assran · Nicolas Loizou · Nicolas Ballas · Michael Rabbat -
2019 Poster: Counterfactual Visual Explanations »
Yash Goyal · Ziyan Wu · Jan Ernst · Dhruv Batra · Devi Parikh · Stefan Lee -
2019 Oral: Counterfactual Visual Explanations »
Yash Goyal · Ziyan Wu · Jan Ernst · Dhruv Batra · Devi Parikh · Stefan Lee -
2019 Oral: Stochastic Gradient Push for Distributed Deep Learning »
Mahmoud Assran · Nicolas Loizou · Nicolas Ballas · Michael Rabbat -
2019 Poster: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2019 Oral: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2018 Poster: Learn from Your Neighbor: Learning Multi-modal Mappings from Sparse Annotations »
Ashwin Kalyan · Stefan Lee · Anitha Kannan · Dhruv Batra -
2018 Oral: Learn from Your Neighbor: Learning Multi-modal Mappings from Sparse Annotations »
Ashwin Kalyan · Stefan Lee · Anitha Kannan · Dhruv Batra