Timezone: »
Variational inference transforms posterior inference into parametric optimization thereby enabling the use of latent variable models where otherwise impractical. However, variational inference can be finicky when different variational parameters control variables that are strongly correlated under the model. Traditional natural gradients based on the variational approximation fail to correct for correlations when the approximation is not the true posterior. To address this, we construct a new natural gradient called the variational predictive natural gradient. It is constructed as an average of the Fisher information of the reparameterized predictive model distribution. Unlike traditional natural gradients for variational inference, this natural gradient accounts for the relationship between model parameters and variational parameters. We also show the variational predictive natural gradient relates to the negative Hessian of the expected log-likelihood. A simple example shows the insight. We demonstrate the empirical value of our method on a classification task, a deep generative model of images, and probabilistic matrix factorization for recommendation.
Author Information
Da Tang (Columbia University)
Rajesh Ranganath (New York University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: The Variational Predictive Natural Gradient »
Thu. Jun 13th 01:30 -- 04:00 AM Room Pacific Ballroom #234
More from the Same Authors
-
2022 Poster: Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets »
Lily Zhang · Veronica Tozzo · John Higgins · Rajesh Ranganath -
2022 Spotlight: Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets »
Lily Zhang · Veronica Tozzo · John Higgins · Rajesh Ranganath -
2021 Poster: Understanding Failures in Out-of-Distribution Detection with Deep Generative Models »
Lily Zhang · Mark Goldstein · Rajesh Ranganath -
2021 Spotlight: Understanding Failures in Out-of-Distribution Detection with Deep Generative Models »
Lily Zhang · Mark Goldstein · Rajesh Ranganath -
2021 Poster: Offline Contextual Bandits with Overparameterized Models »
David Brandfonbrener · William Whitney · Rajesh Ranganath · Joan Bruna -
2021 Spotlight: Offline Contextual Bandits with Overparameterized Models »
David Brandfonbrener · William Whitney · Rajesh Ranganath · Joan Bruna -
2019 Poster: Predicate Exchange: Inference with Declarative Knowledge »
Zenna Tavares · Javier Burroni · Edgar Minasyan · Armando Solar-Lezama · Rajesh Ranganath -
2019 Oral: Predicate Exchange: Inference with Declarative Knowledge »
Zenna Tavares · Javier Burroni · Edgar Minasyan · Armando Solar-Lezama · Rajesh Ranganath -
2019 Poster: Correlated Variational Auto-Encoders »
Da Tang · Dawen Liang · Tony Jebara · Nicholas Ruozzi -
2019 Oral: Correlated Variational Auto-Encoders »
Da Tang · Dawen Liang · Tony Jebara · Nicholas Ruozzi -
2018 Poster: Noisin: Unbiased Regularization for Recurrent Neural Networks »
Adji Bousso Dieng · Rajesh Ranganath · Jaan Altosaar · David Blei -
2018 Oral: Noisin: Unbiased Regularization for Recurrent Neural Networks »
Adji Bousso Dieng · Rajesh Ranganath · Jaan Altosaar · David Blei