Timezone: »

 
Oral
Discovering Latent Covariance Structures for Multiple Time Series
Anh Tong · Jaesik Choi

Wed Jun 12 03:00 PM -- 03:05 PM (PDT) @ Room 101

Analyzing multivariate time series data is important to predict future events and changes of complex systems in finance, manufacturing, and administrative decisions. The expressiveness power of Gaussian Process (GP) regression methods has been significantly improved by compositional covariance structures. In this paper, we present a new GP model which naturally handles multiple time series by placing an Indian Buffet Process (IBP) prior on the presence of shared kernels. Our selective covariance structure decomposition allows exploiting shared parameters over a set of multiple, selected time series. We also investigate the well-definedness of the models when infinite latent components are introduced. We present a pragmatic search algorithm which explores a larger structure space efficiently. Experiments conducted on five real-world data sets demonstrate that our new model outperforms existing methods in term of structure discoveries and predictive performances.

Author Information

Anh Tong (Ulsan National Institute of Science and Technology)
Jaesik Choi (Ulsan National Institute of Science and Technology)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2019 : Poster discussion »
    Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari
  • 2018 Poster: Deep Reinforcement Learning in Continuous Action Spaces: a Case Study in the Game of Simulated Curling »
    kyowoon Lee · Sol-A Kim · Jaesik Choi · Seong-Whan Lee
  • 2018 Oral: Deep Reinforcement Learning in Continuous Action Spaces: a Case Study in the Game of Simulated Curling »
    kyowoon Lee · Sol-A Kim · Jaesik Choi · Seong-Whan Lee