Timezone: »
Oral
Noisy Dual Principal Component Pursuit
Tianyu Ding · Zhihui Zhu · Tianjiao Ding · Yunchen Yang · Daniel Robinson · Manolis Tsakiris · Rene Vidal
Dual Principal Component Pursuit (DPCP) is a recently proposed non-convex optimization based method for learning subspaces of high relative dimension from noiseless datasets contaminated by as many outliers as the square of the number of inliers. Experimentally, DPCP has proved to be robust to noise and outperform the popular RANSAC on 3D vision tasks such as road plane detection and relative poses estimation from three views. This paper extends the global optimality and convergence theory of DPCP to the case of data corrupted by noise, and further demonstrates its robustness using synthetic and real data.
Author Information
Tianyu Ding (Johns Hopkins University)
Zhihui Zhu (Johns Hopkins University)
Tianjiao Ding (ShanghaiTech University)
Yunchen Yang (ShanghaiTech)
Daniel Robinson (Johns Hopkins University)
Manolis Tsakiris (ShanghaiTech University)
Rene Vidal (Johns Hopkins University, USA)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Noisy Dual Principal Component Pursuit »
Thu. Jun 13th 01:30 -- 04:00 AM Room Pacific Ballroom #188
More from the Same Authors
-
2023 Workshop: HiLD: High-dimensional Learning Dynamics Workshop »
Courtney Paquette · Zhenyu Liao · Mihai Nica · Elliot Paquette · Andrew Saxe · Rene Vidal -
2023 Poster: On the Convergence of Gradient Flow on Multi-layer Linear Models »
Hancheng Min · Rene Vidal · Enrique Mallada -
2023 Poster: Learning Globally Smooth Functions on Manifolds »
Juan Cervino · Luiz Chamon · Benjamin Haeffele · Rene Vidal · Alejandro Ribeiro -
2023 Poster: The Ideal Continual Learner: An Agent That Never Forgets »
Liangzu Peng · Paris Giampouras · Rene Vidal -
2022 Poster: Understanding Doubly Stochastic Clustering »
Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele -
2022 Spotlight: Understanding Doubly Stochastic Clustering »
Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele -
2022 Poster: On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features »
Jinxin Zhou · Xiao Li · Tianyu Ding · Chong You · Qing Qu · Zhihui Zhu -
2022 Poster: Robust Training under Label Noise by Over-parameterization »
Sheng Liu · Zhihui Zhu · Qing Qu · Chong You -
2022 Spotlight: Robust Training under Label Noise by Over-parameterization »
Sheng Liu · Zhihui Zhu · Qing Qu · Chong You -
2022 Spotlight: On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features »
Jinxin Zhou · Xiao Li · Tianyu Ding · Chong You · Qing Qu · Zhihui Zhu -
2022 Poster: Reverse Engineering $\ell_p$ attacks: A block-sparse optimization approach with recovery guarantees »
Darshan Thaker · Paris Giampouras · Rene Vidal -
2022 Spotlight: Reverse Engineering $\ell_p$ attacks: A block-sparse optimization approach with recovery guarantees »
Darshan Thaker · Paris Giampouras · Rene Vidal -
2021 Poster: Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach »
Tianyu Ding · Zhihui Zhu · Rene Vidal · Daniel Robinson -
2021 Spotlight: Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach »
Tianyu Ding · Zhihui Zhu · Rene Vidal · Daniel Robinson -
2021 Poster: Understanding the Dynamics of Gradient Flow in Overparameterized Linear models »
Salma Tarmoun · Guilherme Franca · Benjamin Haeffele · Rene Vidal -
2021 Poster: On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks »
Hancheng Min · Salma Tarmoun · Rene Vidal · Enrique Mallada -
2021 Spotlight: On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks »
Hancheng Min · Salma Tarmoun · Rene Vidal · Enrique Mallada -
2021 Spotlight: Understanding the Dynamics of Gradient Flow in Overparameterized Linear models »
Salma Tarmoun · Guilherme Franca · Benjamin Haeffele · Rene Vidal -
2021 Poster: Homomorphic Sensing: Sparsity and Noise »
Liangzu Peng · Boshi Wang · Manolis Tsakiris -
2021 Poster: A Nullspace Property for Subspace-Preserving Recovery »
Mustafa D Kaba · Chong You · Daniel Robinson · Enrique Mallada · Rene Vidal -
2021 Spotlight: Homomorphic Sensing: Sparsity and Noise »
Liangzu Peng · Boshi Wang · Manolis Tsakiris -
2021 Spotlight: A Nullspace Property for Subspace-Preserving Recovery »
Mustafa D Kaba · Chong You · Daniel Robinson · Enrique Mallada · Rene Vidal -
2019 Poster: Alternating Minimizations Converge to Second-Order Optimal Solutions »
Qiuwei Li · Zhihui Zhu · Gongguo Tang -
2019 Oral: Alternating Minimizations Converge to Second-Order Optimal Solutions »
Qiuwei Li · Zhihui Zhu · Gongguo Tang -
2019 Poster: Homomorphic Sensing »
Manolis Tsakiris · Liangzu Peng -
2019 Oral: Homomorphic Sensing »
Manolis Tsakiris · Liangzu Peng -
2018 Poster: Theoretical Analysis of Sparse Subspace Clustering with Missing Entries »
Manolis Tsakiris · Rene Vidal -
2018 Oral: Theoretical Analysis of Sparse Subspace Clustering with Missing Entries »
Manolis Tsakiris · Rene Vidal