Tractable n-Metrics for Multiple Graphs
Sam Safavi · Jose Bento

Thu Jun 13th 05:00 -- 05:05 PM @ Seaside Ballroom

Graphs are used in almost every scientific discipline to express relations among a set of objects. Algorithms that compare graphs, and output a closeness score, or a correspondence among their nodes, are thus extremely important. Despite the large amount of work done, many o the scalable algorithms to compare graphs do not produce closeness scores that satisfy the intuitive properties of metrics. This is problematic since non-metrics are known to degrade the performance of algorithms such as distance-based clustering of graphs (Bento & Ioannidis, 2018). On the other hand, the use of metrics increases the performance of several machine learning tasks (Indyk, 1999; Clarkson, 1999; Angiulli & Pizzuti, 2002; Ackermann et al., 2010). In this paper, we introduce a new family of multi-distances (a distance between more than two elements) that satisfies a generalization of the properties of metrics to multiple elements. In the context of comparing graphs, we are the first to show the existence of multi-distances that simultaneously incorporate the useful property of alignment consistency (Nguyenet al., 2011), and a generalized metric property. Furthermore, we show that these multi-distances can be relaxed to convex optimization problems, without losing the generalized metric property.

Author Information

Sam Safavi (Boston College)
Jose Bento (Boston College)

Related Events (a corresponding poster, oral, or spotlight)