Timezone: »
We study an online and streaming unsupervised classification system. Our setting consists of a collection of classifiers (with unknown confusion matrices) each of which can classify one sample per unit time, and which are accessed by a stream of unlabeled samples. Each sample is dispatched to one or more classifiers, and depending on the labels collected from these classifiers, may be sent to other classifiers to collect additional labels. The labels are continually aggregated. Once the aggregated label has high enough accuracy (a pre-specified threshold for accuracy) or the sample is sent to all the classifiers, the now labeled sample is ejected from the system. For any given pre-specified threshold for accuracy, the objective is to sustain the maximum possible rate of arrival of new samples, such that the number of samples in memory does not grow unbounded. In this paper, we characterize the Pareto-optimal region of accuracy and arrival rate, and develop an algorithm that can operate at any point within this region. Our algorithm uses queueing-based routing and scheduling approaches combined with novel online tensor decomposition method to learn the hidden parameters, to Pareto-optimality guarantees. We finally verify our theoretical results through simulations on various synthetic and real ensembles, where our real ensembles are formed using deep image classifiers, e.g. AlexNet, VGG, and ResNet.
Author Information
Soumya Basu (University of Texas at Austin)
Steven Gutstein (ARL)
Brent Lance (Army Research Laboratory )
Sanjay Shakkottai (University of Texas at Austin)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Pareto Optimal Streaming Unsupervised Classification »
Fri. Jun 14th 01:30 -- 04:00 AM Room Pacific Ballroom #178
More from the Same Authors
-
2023 Poster: Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits »
Ronshee Chawla · Daniel Vial · Sanjay Shakkottai · R Srikant -
2023 Poster: PAC Generalization via Invariant Representations »
Advait Parulekar · Karthikeyan Shanmugam · Sanjay Shakkottai -
2022 Poster: MAML and ANIL Provably Learn Representations »
Liam Collins · Aryan Mokhtari · Sewoong Oh · Sanjay Shakkottai -
2022 Poster: Asymptotically-Optimal Gaussian Bandits with Side Observations »
Alexia Atsidakou · Orestis Papadigenopoulos · Constantine Caramanis · Sujay Sanghavi · Sanjay Shakkottai -
2022 Spotlight: Asymptotically-Optimal Gaussian Bandits with Side Observations »
Alexia Atsidakou · Orestis Papadigenopoulos · Constantine Caramanis · Sujay Sanghavi · Sanjay Shakkottai -
2022 Spotlight: MAML and ANIL Provably Learn Representations »
Liam Collins · Aryan Mokhtari · Sewoong Oh · Sanjay Shakkottai -
2022 Poster: Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation »
Daniel Vial · Advait Parulekar · Sanjay Shakkottai · R Srikant -
2022 Spotlight: Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation »
Daniel Vial · Advait Parulekar · Sanjay Shakkottai · R Srikant -
2022 Poster: Linear Bandit Algorithms with Sublinear Time Complexity »
Shuo Yang · Tongzheng Ren · Sanjay Shakkottai · Eric Price · Inderjit Dhillon · Sujay Sanghavi -
2022 Spotlight: Linear Bandit Algorithms with Sublinear Time Complexity »
Shuo Yang · Tongzheng Ren · Sanjay Shakkottai · Eric Price · Inderjit Dhillon · Sujay Sanghavi -
2020 Poster: Learning Mixtures of Graphs from Epidemic Cascades »
Jessica Hoffmann · Soumya Basu · Surbhi Goel · Constantine Caramanis