Timezone: »
A key learning scenario in large-scale applications is that of federated learning, where a centralized model is trained based on data originating from a large number of clients. We argue that, with the existing training and inference, federated models can be biased towards different clients. Instead, we propose a new framework of agnostic federated learning, where the centralized model is optimized for any target distribution formed by a mixture of the client distributions. We further show that this framework naturally yields a notion of fairness. We present data-dependent Rademacher complexity guarantees for learning with this objective, which guide the definition of an algorithm for agnostic federated learning. We also give a fast stochastic optimization algorithm for solving the corresponding optimization problem, for which we prove convergence bounds, assuming a convex loss function and hypothesis set. We further empirically demonstrate the benefits of our approach in several datasets. Beyond federated learning, our framework and algorithm can be of interest to other learning scenarios such as cloud computing, domain adaptation, drifting, and other contexts where the training and test distributions do not coincide.
Author Information
Mehryar Mohri (Courant Institute and Google Research)
Gary Sivek (Google)
Ananda Suresh (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Agnostic Federated Learning »
Fri. Jun 14th 01:30 -- 04:00 AM Room Pacific Ballroom #172
More from the Same Authors
-
2023 Poster: Subset-Based Instance Optimality in Private Estimation »
Travis Dick · Alex Kulesza · Ziteng Sun · Ananda Suresh -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2022 Spotlight: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2019 Poster: Online Learning with Sleeping Experts and Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2019 Oral: Online Learning with Sleeping Experts and Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2019 Poster: Active Learning with Disagreement Graphs »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri · Ningshan Zhang · Claudio Gentile -
2019 Oral: Active Learning with Disagreement Graphs »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri · Ningshan Zhang · Claudio Gentile -
2018 Poster: Online Learning with Abstention »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2018 Oral: Online Learning with Abstention »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2017 Poster: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Talk: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Poster: AdaNet: Adaptive Structural Learning of Artificial Neural Networks »
Corinna Cortes · Xavi Gonzalvo · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang -
2017 Talk: AdaNet: Adaptive Structural Learning of Artificial Neural Networks »
Corinna Cortes · Xavi Gonzalvo · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang