Timezone: »
Spherical convolutional networks have been introduced recently as tools to learn powerful feature representations of 3D shapes. Spherical CNNs are equivariant to 3D rotations making them ideally suited for applications where 3D data may be observed in arbitrary orientations. In this paper we learn 2D image embeddings with a similar equivariant structure: embedding the image of a 3D object should commute with rotations of the object. We introduce a cross-domain embedding from 2D images into a spherical CNN latent space. Our model is supervised only by target embeddings obtained from a spherical CNN pretrained for 3D shape classification. The trained model learns to encode images with 3D shape properties and is equivariant to 3D rotations of the observed object. We show that learning only a rich embedding for images with appropriate geometric structure is in and of itself sufficient for tackling numerous applications. Evidence from two different applications, relative pose estimation and novel view synthesis, demonstrates that equivariant embeddings are sufficient for both applications without requiring any task-specific supervised training.
Author Information
Carlos Esteves (University of Pennsylvania)
Avneesh Sud (Google)
Zhengyi Luo (University of Pennsylvania)
Kostas Daniilidis (University of Pennsylvania)
Ameesh Makadia (Google Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Cross-Domain 3D Equivariant Image Embeddings »
Fri. Jun 14th 01:30 -- 04:00 AM Room Pacific Ballroom #25
More from the Same Authors
-
2021 : Discovering and Achieving Goals with World Models »
Russell Mendonca · Oleh Rybkin · Kostas Daniilidis · Danijar Hafner · Deepak Pathak -
2022 Poster: Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces »
Yinshuang Xu · Jiahui Lei · Edgar Dobriban · Kostas Daniilidis -
2022 Spotlight: Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces »
Yinshuang Xu · Jiahui Lei · Edgar Dobriban · Kostas Daniilidis -
2021 Poster: Simple and Effective VAE Training with Calibrated Decoders »
Oleh Rybkin · Kostas Daniilidis · Sergey Levine -
2021 Poster: Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold »
Kieran Murphy · Carlos Esteves · Varun Jampani · Srikumar Ramalingam · Ameesh Makadia -
2021 Spotlight: Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold »
Kieran Murphy · Carlos Esteves · Varun Jampani · Srikumar Ramalingam · Ameesh Makadia -
2021 Spotlight: Simple and Effective VAE Training with Calibrated Decoders »
Oleh Rybkin · Kostas Daniilidis · Sergey Levine -
2021 Poster: Model-Based Reinforcement Learning via Latent-Space Collocation »
Oleh Rybkin · Chuning Zhu · Anusha Nagabandi · Kostas Daniilidis · Igor Mordatch · Sergey Levine -
2021 Spotlight: Model-Based Reinforcement Learning via Latent-Space Collocation »
Oleh Rybkin · Chuning Zhu · Anusha Nagabandi · Kostas Daniilidis · Igor Mordatch · Sergey Levine -
2020 Poster: Planning to Explore via Self-Supervised World Models »
Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak