Timezone: »
Oral
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning
Casey Chu · Jose Blanchet · Peter Glynn
The goal of this paper is to provide a unifying view of a wide range of problems of interest in machine learning by framing them as the minimization of functionals defined on the space of probability measures. In particular, we show that generative adversarial networks, variational inference, and actor-critic methods in reinforcement learning can all be seen through the lens of our framework. We then discuss a generic optimization algorithm for our formulation, called probability functional descent (PFD), and show how this algorithm recovers existing methods developed independently in the settings mentioned earlier.
Author Information
Casey Chu (Stanford University)
Jose Blanchet (Stanford University)
Peter Glynn (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning »
Thu. Jun 13th 01:30 -- 04:00 AM Room Pacific Ballroom #30
More from the Same Authors
-
2022 Poster: Distributionally Robust $Q$-Learning »
Zijian Liu · Jerry Bai · Jose Blanchet · Perry Dong · Wei Xu · Zhengqing Zhou · Zhengyuan Zhou -
2022 Spotlight: Distributionally Robust $Q$-Learning »
Zijian Liu · Jerry Bai · Jose Blanchet · Perry Dong · Wei Xu · Zhengqing Zhou · Zhengyuan Zhou -
2021 Poster: Testing Group Fairness via Optimal Transport Projections »
Nian Si · Karthyek Murthy · Jose Blanchet · Viet Anh Nguyen -
2021 Spotlight: Testing Group Fairness via Optimal Transport Projections »
Nian Si · Karthyek Murthy · Jose Blanchet · Viet Anh Nguyen -
2021 Poster: Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts »
Bahar Taskesen · Man-Chung Yue · Jose Blanchet · Daniel Kuhn · Viet Anh Nguyen -
2021 Oral: Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts »
Bahar Taskesen · Man-Chung Yue · Jose Blanchet · Daniel Kuhn · Viet Anh Nguyen -
2020 Poster: Robust Bayesian Classification Using An Optimistic Score Ratio »
Viet Anh Nguyen · Nian Si · Jose Blanchet -
2020 Poster: Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits »
Nian Si · Fan Zhang · Zhengyuan Zhou · Jose Blanchet -
2018 Poster: Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go? »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter Glynn · Yinyu Ye · Li-Jia Li · Li Fei-Fei -
2018 Oral: Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go? »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter Glynn · Yinyu Ye · Li-Jia Li · Li Fei-Fei