Timezone: »
Measurement error in observational datasets can lead to systematic bias in inferences based on these datasets. As studies based on observational data are increasingly used to inform decisions with real-world impact, it is critical that we develop a robust set of techniques for analyzing and adjusting for these biases. In this paper we present a method for estimating the distribution of an outcome given a binary exposure that is subject to underreporting. Our method is based on a missing data view of the measurement error problem, where the true exposure is treated as a latent variable that is marginalized out of a joint model. We prove three different conditions under which the outcome distribution can still be identified from data containing only an error-prone observations of the exposure. We demonstrate this method on synthetic data and analyze its sensitivity to near violations of the identifiability conditions. Finally, we use this method to estimate the effects of maternal smoking and opioid use during pregnancy on childhood obesity, two import problems from public health. Using the proposed method, we estimate these effects using only subject-reported drug use data and substantially refine the range of estimates generated by a sensitivity analysis-based approach. Further, the estimates produced by our method are consistent with existing literature on both the effects of maternal smoking and the rate at which subjects underreport smoking.
Author Information
Roy Adams (Johns Hopkins University)
Yuelong Ji (Johns Hopkins University)
Xiaobin Wang (Johns Hopkins University)
Suchi Saria (Johns Hopkins University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Learning Models from Data with Measurement Error: Tackling Underreporting »
Thu. Jun 13th 01:30 -- 04:00 AM Room Pacific Ballroom #75
More from the Same Authors
-
2019 : Suchi Saria (John Hopkins) - Link between Causal Inference and Reinforcement Learning and Applications to Learning from Offline/Observational Data »
Suchi Saria -
2019 : Keynote by Suchi Saria: Safety Challenges with Black-Box Predictors and Novel Learning Approaches for Failure Proofing »
Suchi Saria -
2019 Poster: Active Learning for Decision-Making from Imbalanced Observational Data »
Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski -
2019 Oral: Active Learning for Decision-Making from Imbalanced Observational Data »
Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski