Timezone: »
In the context of individual-level causal inference, we study the problem of predicting whether someone will respond or not to a treatment based on their features and past examples of features, treatment indicator (e.g., drug/no drug), and a binary outcome (e.g., recovery from disease). As a classification task, the problem is made difficult by not knowing the example outcomes under the opposite treatment indicators. We assume the effect is monotonic, as in advertising's effect on a purchase or bail-setting's effect on reappearance in court: either it would have happened regardless of treatment, not happened regardless, or happened only depending on exposure to treatment. Predicting whether the latter is latently the case is our focus. While previous work focuses on conditional average treatment effect estimation, formulating the problem as a classification task allows us to develop new tools more suited to this problem. By leveraging monotonicity, we develop new discriminative and generative algorithms for the responder-classification problem. We explore and discuss connections to corrupted data and policy learning. We provide an empirical study with both synthetic and real datasets to compare these specialized algorithms to standard benchmarks.
Author Information
Nathan Kallus (Cornell University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Classifying Treatment Responders Under Causal Effect Monotonicity »
Thu. Jun 13th 01:30 -- 04:00 AM Room Pacific Ballroom #74
More from the Same Authors
-
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 Poster: Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR »
Kaiwen Wang · Nathan Kallus · Wen Sun -
2023 Poster: Smooth Non-stationary Bandits »
Su Jia · Qian Xie · Nathan Kallus · Peter Frazier -
2023 Poster: Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2023 Poster: B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding »
Miruna Oprescu · Jacob Dorn · Marah Ghoummaid · Andrew Jesson · Nathan Kallus · Uri Shalit -
2022 Poster: Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning »
Nathan Kallus · Xiaojie Mao · Kaiwen Wang · Zhengyuan Zhou -
2022 Poster: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2022 Spotlight: Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning »
Nathan Kallus · Xiaojie Mao · Kaiwen Wang · Zhengyuan Zhou -
2022 Oral: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2021 Poster: Optimal Off-Policy Evaluation from Multiple Logging Policies »
Nathan Kallus · Yuta Saito · Masatoshi Uehara -
2021 Spotlight: Optimal Off-Policy Evaluation from Multiple Logging Policies »
Nathan Kallus · Yuta Saito · Masatoshi Uehara -
2020 Poster: Statistically Efficient Off-Policy Policy Gradients »
Nathan Kallus · Masatoshi Uehara -
2020 Poster: DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training »
Nathan Kallus -
2020 Poster: Efficient Policy Learning from Surrogate-Loss Classification Reductions »
Andrew Bennett · Nathan Kallus -
2020 Poster: Double Reinforcement Learning for Efficient and Robust Off-Policy Evaluation »
Nathan Kallus · Masatoshi Uehara -
2018 Poster: Residual Unfairness in Fair Machine Learning from Prejudiced Data »
Nathan Kallus · Angela Zhou -
2018 Oral: Residual Unfairness in Fair Machine Learning from Prejudiced Data »
Nathan Kallus · Angela Zhou -
2017 Poster: Recursive Partitioning for Personalization using Observational Data »
Nathan Kallus -
2017 Talk: Recursive Partitioning for Personalization using Observational Data »
Nathan Kallus