Timezone: »
Predicting the number of processor clock cycles it takes to execute a block of assembly instructions in steady state (the throughput) is important for both compiler designers and performance engineers. Building an analytical model to do so is especially complicated in modern x86-64 Complex Instruction Set Computer (CISC) machines with sophisticated processor microarchitectures in that it is tedious, error prone, and must be performed from scratch for each processor generation.
In this paper, we present Ithemal, the first tool which learns to predict the throughput of a set of instructions. Ithemal uses a hierarchical LSTM--based approach to predict throughput based on the opcodes and operands of instructions in a basic block. We show that Ithemal is more accurate than state-of-the-art hand-written tools currently used in compiler backends and static machine code analyzers. In particular, our model has less than half the error of state-of-the-art analytic models (LLVM's llvm-mca and Intel's IACA). Ithemal is also able to predict these throughput values at a faster rate than the aforementioned tools, and is easily ported across a variety process microarchitectures with minimal developer effort.
Author Information
Charith Mendis (MIT)
Alex Renda (MIT)
Dr.Saman Amarasinghe (Massachusetts institute of technology)
Michael Carbin (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks »
Wed. Jun 12th 01:30 -- 04:00 AM Room Pacific Ballroom #241
More from the Same Authors
-
2021 : Studying the Consistency and Composability of Lottery Ticket Pruning Masks »
Rajiv Movva · Michael Carbin · Jonathan Frankle -
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2023 : Distributions for Compositionally Differentiating Parametric Discontinuities »
Jesse Michel · Kevin Mu · Xuanda Yang · Sai Praveen Bangaru · Elias Rojas Collins · Gilbert Bernstein · Jonathan Ragan-Kelley · Michael Carbin · Tzu-Mao Li -
2023 : Can LLMs Generate Random Numbers? Evaluating LLM Sampling in Controlled Domains »
Aspen Hopkins · Alex Renda · Michael Carbin -
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2021 Poster: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2021 Spotlight: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2020 Poster: Linear Mode Connectivity and the Lottery Ticket Hypothesis »
Jonathan Frankle · Gintare Karolina Dziugaite · Daniel Roy · Michael Carbin