Timezone: »
The problem of estimating causal effects of treatments from observational data falls beyond the realm of supervised learning — because counterfactual data is inaccessible, we can never observe the true causal effects. In the absence of "supervision", how can we evaluate the performance of causal inference methods? In this paper, we use influence functions — the functional derivatives of a loss function — to develop a model validation procedure that estimates the estimation error of causal inference methods. Our procedure utilizes a Taylor-like expansion to approximate the loss function of a method on a given dataset in terms of the influence functions of its loss on a "synthesized", proximal dataset with known causal effects. Under minimal regularity assumptions, we show that our procedure is consistent and efficient. Experiments on 77 benchmark datasets show that using our procedure, we can accurately predict the comparative performances of state-of-the-art causal inference methods applied to a given observational study.
Author Information
Ahmed Alaa (UCLA)
Mihaela van der Schaar (UCLA)

Professor van der Schaar is John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine at the University of Cambridge, a Turing Faculty Fellow at The Alan Turing Institute in London, and Chancellor's Professor at UCLA. She was elected IEEE Fellow in 2009. She has received numerous awards, including the Oon Prize on Preventative Medicine from the University of Cambridge (2018), an NSF Career Award (2004), 3 IBM Faculty Awards, the IBM Exploratory Stream Analytics Innovation Award, the Philips Make a Difference Award and several best paper awards, including the IEEE Darlington Award. She holds 35 granted USA patents. In 2019, she was identified by National Endowment for Science, Technology and the Arts as the female researcher based in the UK with the most publications in the field of AI. She was also elected as a 2019 "Star in Computer Networking and Communications". Her current research focus is on machine learning, AI and operations research for healthcare and medicine. For more details, see her website: http://www.vanderschaar-lab.com/
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Validating Causal Inference Models via Influence Functions »
Wed Jun 12th 01:30 -- 04:00 AM Room Pacific Ballroom
More from the Same Authors
-
2020 Poster: Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift »
Alexander Chan · Ahmed Alaa · Zhaozhi Qian · Mihaela van der Schaar -
2020 Poster: Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders »
Ioana Bica · Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2018 Poster: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Oral: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Poster: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Oral: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2017 Poster: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa Ibrahim · Scott B Hu · Mihaela van der Schaar -
2017 Talk: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa Ibrahim · Scott B Hu · Mihaela van der Schaar