Timezone: »
An important task in machine learning and statistics is the approximation of a probability measure by an empirical measure supported on a discrete point set. Stein Points are a class of algorithms for this task, which proceed by sequentially minimising a Stein discrepancy between the empirical measure and the target and, hence, require the solution of a non-convex optimisation problem to obtain each new point. This paper removes the need to solve this optimisation problem by, instead, selecting each new point based on a Markov chain sample path. This significantly reduces the computational cost of Stein Points and leads to a suite of algorithms that are straightforward to implement. The new algorithms are illustrated on a set of challenging Bayesian inference problems, and rigorous theoretical guarantees of consistency are established.
Author Information
Wilson Ye Chen (The Institute of Statistical Mathematics)
Alessandro Barp (Imperial College London)
Francois-Xavier Briol (University of Cambridge)
Jackson Gorham (OPENDOOR)
Mark Girolami (Imperial College London)
Lester Mackey (Microsoft Research)
Chris Oates (Newcastle University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Stein Point Markov Chain Monte Carlo »
Wed. Jun 12th 01:30 -- 04:00 AM Room Pacific Ballroom #216
More from the Same Authors
-
2021 : SNoB: Social Norm Bias of “Fair” Algorithms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2021 : Are You Man Enough? Even Fair Algorithms Conform to Societal Norms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2023 : Robust and Scalable Bayesian Online Changepoint Detection »
Matias Altamirano · Francois-Xavier Briol · Jeremias Knoblauch -
2023 : Adaptive Bias Correction for Improved Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2023 Poster: Vector-Valued Control Variates »
Zhuo Sun · Alessandro Barp · Francois-Xavier Briol -
2023 Poster: Robust and Scalable Bayesian Online Changepoint Detection »
Matias Altamirano · Francois-Xavier Briol · Jeremias Knoblauch -
2023 Poster: Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference »
Ayush Bharti · Masha Naslidnyk · Oscar Key · Samuel Kaski · Francois-Xavier Briol -
2022 Poster: Scalable Spike-and-Slab »
Niloy Biswas · Lester Mackey · Xiao-Li Meng -
2022 Spotlight: Scalable Spike-and-Slab »
Niloy Biswas · Lester Mackey · Xiao-Li Meng -
2021 : Lester Mackey: Online Learning with Optimism and Delay »
Lester Mackey -
2019 Workshop: Stein’s Method for Machine Learning and Statistics »
Francois-Xavier Briol · Lester Mackey · Chris Oates · Qiang Liu · Larry Goldstein · Larry Goldstein -
2019 : Overview of the day »
Francois-Xavier Briol -
2018 Poster: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Poster: Stein Points »
Wilson Ye Chen · Lester Mackey · Jackson Gorham · Francois-Xavier Briol · Chris J Oates -
2018 Poster: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Oral: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Oral: Stein Points »
Wilson Ye Chen · Lester Mackey · Jackson Gorham · Francois-Xavier Briol · Chris J Oates -
2018 Oral: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2017 Poster: Measuring Sample Quality with Kernels »
Jackson Gorham · Lester Mackey -
2017 Poster: On the Sampling Problem for Kernel Quadrature »
Francois-Xavier Briol · Chris J Oates · Jon Cockayne · Wilson Ye Chen · Mark Girolami -
2017 Talk: Measuring Sample Quality with Kernels »
Jackson Gorham · Lester Mackey -
2017 Talk: On the Sampling Problem for Kernel Quadrature »
Francois-Xavier Briol · Chris J Oates · Jon Cockayne · Wilson Ye Chen · Mark Girolami