Timezone: »
In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to 1-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.
Author Information
Zhiming Zhou (Shanghai Jiao Tong University)
Graphics, GANs, Optimization, Machine Learning
Jiadong Liang (Peking University)
Yuxuan Song (Shanghai Jiao Tong Univesity)
Lantao Yu (Stanford University)
Hongwei Wang (Shanghai Jiao Tong University)
Weinan Zhang (Shanghai Jiao Tong University)
Yong Yu (Shanghai Jiao Tong University)
Zhihua Zhang (Peking University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Lipschitz Generative Adversarial Nets »
Wed. Jun 12th 01:30 -- 04:00 AM Room Pacific Ballroom #19
More from the Same Authors
-
2021 : Finding the Near Optimal Policy via Reductive Regularization in MDPs »
Wenhao Yang · Xiang Li · Guangzeng Xie · Zhihua Zhang -
2023 Poster: GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models »
Hanjing Wang · Man-Kit Sit · Congjie He · Ying Wen · Weinan Zhang · Jun Wang · Yaodong Yang · Luo Mai -
2023 Poster: Semiparametrically Efficient Off-Policy Evaluation in Linear Markov Decision Processes »
Chuhan Xie · Wenhao Yang · Zhihua Zhang -
2022 Poster: Plan Your Target and Learn Your Skills: Transferable State-Only Imitation Learning via Decoupled Policy Optimization »
Minghuan Liu · Zhengbang Zhu · Yuzheng Zhuang · Weinan Zhang · Jianye Hao · Yong Yu · Jun Wang -
2022 Spotlight: Plan Your Target and Learn Your Skills: Transferable State-Only Imitation Learning via Decoupled Policy Optimization »
Minghuan Liu · Zhengbang Zhu · Yuzheng Zhuang · Weinan Zhang · Jianye Hao · Yong Yu · Jun Wang -
2022 Poster: On Non-local Convergence Analysis of Deep Linear Networks »
Kun Chen · Dachao Lin · Zhihua Zhang -
2022 Spotlight: On Non-local Convergence Analysis of Deep Linear Networks »
Kun Chen · Dachao Lin · Zhihua Zhang -
2021 Poster: Communication-Efficient Distributed SVD via Local Power Iterations »
Xiang Li · Shusen Wang · Kun Chen · Zhihua Zhang -
2021 Spotlight: Communication-Efficient Distributed SVD via Local Power Iterations »
Xiang Li · Shusen Wang · Kun Chen · Zhihua Zhang -
2020 Poster: Multi-Agent Determinantal Q-Learning »
Yaodong Yang · Ying Wen · Jun Wang · Liheng Chen · Kun Shao · David Mguni · Weinan Zhang -
2020 Poster: Lower Complexity Bounds for Finite-Sum Convex-Concave Minimax Optimization Problems »
Guangzeng Xie · Luo Luo · yijiang lian · Zhihua Zhang -
2020 Poster: Bidirectional Model-based Policy Optimization »
Hang Lai · Jian Shen · Weinan Zhang · Yong Yu -
2018 Poster: Path-Level Network Transformation for Efficient Architecture Search »
Han Cai · Jiacheng Yang · Weinan Zhang · Song Han · Yong Yu -
2018 Poster: Mean Field Multi-Agent Reinforcement Learning »
Yaodong Yang · Rui Luo · Minne Li · Ming Zhou · Weinan Zhang · Jun Wang -
2018 Oral: Mean Field Multi-Agent Reinforcement Learning »
Yaodong Yang · Rui Luo · Minne Li · Ming Zhou · Weinan Zhang · Jun Wang -
2018 Oral: Path-Level Network Transformation for Efficient Architecture Search »
Han Cai · Jiacheng Yang · Weinan Zhang · Song Han · Yong Yu