Timezone: »
We introduce Act2Vec, a general framework for learning context-based action representation for Reinforcement Learning. Representing actions in a vector space help reinforcement learning algorithms achieve better performance by grouping similar actions and utilizing relations between different actions. We show how prior knowledge of an environment can be extracted from demonstrations and injected into action vector representations that encode natural compatible behavior. We then use these for augmenting state representations as well as improving function approximation of Q-values. We visualize and test action embeddings in three domains including a drawing task, a high dimensional navigation task, and the large action space domain of StarCraft II.
Author Information
Guy Tennenholtz (Technion)
Phd Student
Shie Mannor (Technion)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: The Natural Language of Actions »
Thu Jun 13th 01:30 -- 04:00 AM Room Pacific Ballroom
More from the Same Authors
-
2020 Poster: Optimistic Policy Optimization with Bandit Feedback »
Lior Shani · Yonathan Efroni · Aviv Rosenberg · Shie Mannor -
2020 Poster: Topic Modeling via Full Dependence Mixtures »
Dan Fisher · Mark Kozdoba · Shie Mannor -
2019 Poster: Exploration Conscious Reinforcement Learning Revisited »
Lior Shani · Yonathan Efroni · Shie Mannor -
2019 Poster: Action Robust Reinforcement Learning and Applications in Continuous Control »
Chen Tessler · Chen Tessler · Yonathan Efroni · Shie Mannor -
2019 Oral: Exploration Conscious Reinforcement Learning Revisited »
Lior Shani · Yonathan Efroni · Shie Mannor -
2019 Poster: Nonlinear Distributional Gradient Temporal-Difference Learning »
chao qu · Shie Mannor · Huan Xu -
2019 Oral: Action Robust Reinforcement Learning and Applications in Continuous Control »
Chen Tessler · Chen Tessler · Yonathan Efroni · Yonathan Efroni · Shie Mannor · Shie Mannor -
2019 Oral: Nonlinear Distributional Gradient Temporal-Difference Learning »
chao qu · Shie Mannor · Huan Xu -
2018 Poster: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Oral: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2017 Workshop: Lifelong Learning: A Reinforcement Learning Approach »
Sarath Chandar · Balaraman Ravindran · Daniel J. Mankowitz · Shie Mannor · Tom Zahavy -
2017 Poster: Consistent On-Line Off-Policy Evaluation »
Assaf Hallak · Shie Mannor -
2017 Talk: Consistent On-Line Off-Policy Evaluation »
Assaf Hallak · Shie Mannor -
2017 Poster: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor -
2017 Poster: Multi-objective Bandits: Optimizing the Generalized Gini Index »
Robert Busa-Fekete · Balazs Szorenyi · Paul Weng · Shie Mannor -
2017 Talk: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor -
2017 Talk: Multi-objective Bandits: Optimizing the Generalized Gini Index »
Robert Busa-Fekete · Balazs Szorenyi · Paul Weng · Shie Mannor