Timezone: »
The field of reinforcement learning (RL) is facing increasingly challenging domains with combinatorial complexity. For an RL agent to address these challenges, it is essential that it can plan effectively. Prior work has typically utilized an explicit model of the environment, combined with a specific planning algorithm (such as tree search). More recently, a new family of methods have been proposed that learn how to plan, by providing the structure for planning via an inductive bias in the function approximator (such as a tree structured neural network), trained end-to-end by a model-free RL algorithm. In this paper, we go even further, and demonstrate empirically that an entirely model-free approach, without special structure beyond standard neural network components such as convolutional networks and LSTMs, can learn to exhibit many of the characteristics typically associated with a model-based planner. We measure our agent's effectiveness at planning in terms of its ability to generalize across a combinatorial and irreversible state space, its data efficiency, and its ability to utilize additional thinking time. We find that our agent has many of the characteristics that one might expect to find in a planning algorithm. Furthermore, it exceeds the state-of-the-art in challenging combinatorial domains such as Sokoban and outperforms other model-free approaches that utilize strong inductive biases toward planning.
Author Information
Arthur Guez (Google DeepMind)
Mehdi Mirza (DeepMind)
Karol Gregor (DeepMind)
Rishabh Kabra (DeepMind)
Sebastien Racaniere (DeepMind)
Theophane Weber (DeepMind)
David Raposo (DeepMind)
Adam Santoro (DeepMind)
Laurent Orseau (DeepMind)
Tom Eccles (DeepMind)
Greg Wayne (DeepMind)
David Silver (Google DeepMind)
Timothy Lillicrap (Google DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: An Investigation of Model-Free Planning »
Wed. Jun 12th 01:30 -- 04:00 AM Room Pacific Ballroom #41
More from the Same Authors
-
2022 : Learning to induce causal structure »
Rosemary Nan Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Matthew Botvinick · Theophane Weber · Michael Mozer · Danilo J. Rezende -
2023 Oral: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: Investigating the Role of Model-Based Learning in Exploration and Transfer »
Jacob C Walker · Eszter Vértes · Yazhe Li · Gabriel Dulac-Arnold · Ankesh Anand · Theophane Weber · Jessica Hamrick -
2023 Poster: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2022 Poster: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Poster: Proving Theorems using Incremental Learning and Hindsight Experience Replay »
Eser Aygün · Ankit Anand · Laurent Orseau · Xavier Glorot · Stephen McAleer · Vlad Firoiu · Lei Zhang · Doina Precup · Shibl Mourad -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Spotlight: Proving Theorems using Incremental Learning and Hindsight Experience Replay »
Eser Aygün · Ankit Anand · Laurent Orseau · Xavier Glorot · Stephen McAleer · Vlad Firoiu · Lei Zhang · Doina Precup · Shibl Mourad -
2022 Poster: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2022 Spotlight: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2021 Poster: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Poster: Imitation by Predicting Observations »
Drew Jaegle · Yury Sulsky · Arun Ahuja · Jake Bruce · Rob Fergus · Greg Wayne -
2021 Poster: Learning and Planning in Complex Action Spaces »
Thomas Hubert · Julian Schrittwieser · Ioannis Antonoglou · Mohammadamin Barekatain · Simon Schmitt · David Silver -
2021 Poster: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Spotlight: Learning and Planning in Complex Action Spaces »
Thomas Hubert · Julian Schrittwieser · Ioannis Antonoglou · Mohammadamin Barekatain · Simon Schmitt · David Silver -
2021 Spotlight: Imitation by Predicting Observations »
Drew Jaegle · Yury Sulsky · Arun Ahuja · Jake Bruce · Rob Fergus · Greg Wayne -
2021 Spotlight: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2020 : QA for invited talk 1 Silver »
David Silver -
2020 : Invited talk 1 Silver »
David Silver -
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Jane Wang · Stefan Bauer · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer -
2020 Poster: Probing Emergent Semantics in Predictive Agents via Question Answering »
Abhishek Das · Federico Carnevale · Hamza Merzic · Laura Rimell · Rosalia Schneider · Josh Abramson · Alden Hung · Arun Ahuja · Stephen Clark · Greg Wayne · Feilx Hill -
2020 Poster: Normalizing Flows on Tori and Spheres »
Danilo J. Rezende · George Papamakarios · Sebastien Racaniere · Michael Albergo · Gurtej Kanwar · Phiala Shanahan · Kyle Cranmer -
2020 Poster: What Can Learned Intrinsic Rewards Capture? »
Zeyu Zheng · Junhyuk Oh · Matteo Hessel · Zhongwen Xu · Manuel Kroiss · Hado van Hasselt · David Silver · Satinder Singh -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : invited talk by David Silver (Deepmind): AlphaStar: Mastering the Game of StarCraft II »
David Silver -
2019 Poster: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2019 Poster: Meta-Learning Neural Bloom Filters »
Jack Rae · Sergey Bartunov · Timothy Lillicrap -
2019 Poster: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2019 Oral: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2019 Oral: Meta-Learning Neural Bloom Filters »
Jack Rae · Sergey Bartunov · Timothy Lillicrap -
2019 Oral: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2019 Poster: Deep Compressed Sensing »
Yan Wu · Mihaela Rosca · Timothy Lillicrap -
2019 Oral: Deep Compressed Sensing »
Yan Wu · Mihaela Rosca · Timothy Lillicrap -
2019 Poster: Composing Entropic Policies using Divergence Correction »
Jonathan Hunt · Andre Barreto · Timothy Lillicrap · Nicolas Heess -
2019 Oral: Composing Entropic Policies using Divergence Correction »
Jonathan Hunt · Andre Barreto · Timothy Lillicrap · Nicolas Heess -
2018 Poster: The Mechanics of n-Player Differentiable Games »
David Balduzzi · Sebastien Racaniere · James Martens · Jakob Foerster · Karl Tuyls · Thore Graepel -
2018 Poster: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Oral: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Oral: The Mechanics of n-Player Differentiable Games »
David Balduzzi · Sebastien Racaniere · James Martens · Jakob Foerster · Karl Tuyls · Thore Graepel -
2018 Poster: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Poster: Fast Parametric Learning with Activation Memorization »
Jack Rae · Chris Dyer · Peter Dayan · Timothy Lillicrap -
2018 Poster: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Oral: Fast Parametric Learning with Activation Memorization »
Jack Rae · Chris Dyer · Peter Dayan · Timothy Lillicrap -
2018 Oral: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Poster: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Poster: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Talk: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Talk: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Poster: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Poster: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas -
2017 Talk: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Poster: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · Koray Kavukcuoglu -
2017 Talk: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas -
2017 Talk: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · Koray Kavukcuoglu