Timezone: »

Neural Inverse Knitting: From Images to Manufacturing Instructions
Alexandre Kaspar · Tae-Hyun Oh · Liane Makatura · Petr Kellnhofer · Wojciech Matusik

Wed Jun 12 03:00 PM -- 03:05 PM (PDT) @ Seaside Ballroom

Motivated by the recent potential of mass customization brought by whole-garment knitting machines, we introduce the new problem of automatic machine instruction generation using a single image of the desired physical product, which we apply to machine knitting. We propose to tackle this problem by directly learning to synthesize regular machine instructions from real images. We create a cured dataset of real samples with their instruction counterpart and propose to use synthetic images to augment it in a novel way. We theoretically motivate our data mixing framework and show empirical results suggesting that making real images look more synthetic is beneficial in our problem setup. We will make our dataset and code publicly available for reproducibility and to motivate further research related to manufacturing and program synthesis.

Author Information

Alexandre Kaspar (MIT CSAIL)

PhD student at MIT CSAIL working on modeling tools for digital fabrication including 3D printing and industrial machine knitting.

Tae-Hyun Oh (MIT CSAIL)
Liane Makatura (MIT)
Petr Kellnhofer (MIT)
Wojciech Matusik (MIT)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors