Timezone: »
Oral
Boosted Density Estimation Remastered
Zac Cranko · Richard Nock
There has recently been a steady increase in the number iterative approaches to density estimation. However, an accompanying burst of formal convergence guarantees has not followed; all results pay the price of heavy assumptions which are often unrealistic or hard to check. The \emph{Generative Adversarial Network (GAN)} literature --- seemingly orthogonal to the aforementioned pursuit --- has had the side effect of a renewed interest in variational divergence minimisation (notably $f$-GAN). We show that by introducing a \textit{weak learning assumption} (in the sense of the classical boosting framework) we are able to import some recent results from the GAN literature to develop an iterative boosted density estimation algorithm, including formal convergence results with rates, that does not suffer the shortcomings other approaches. We show that the density fit is an exponential family, and as part of our analysis obtain an improved variational characterization of $f$-GAN.
Author Information
Zac Cranko (ANU)
Richard Nock (Data61, The Australian National University and the University of Sydney)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Boosted Density Estimation Remastered »
Wed. Jun 12th 01:30 -- 04:00 AM Room Pacific Ballroom #161
More from the Same Authors
-
2020 Poster: Supervised learning: no loss no cry »
Richard Nock · Aditya Menon -
2019 Poster: Monge blunts Bayes: Hardness Results for Adversarial Training »
Zac Cranko · Aditya Menon · Richard Nock · Cheng Soon Ong · Zhan Shi · Christian Walder -
2019 Poster: Lossless or Quantized Boosting with Integer Arithmetic »
Richard Nock · Robert C Williamson -
2019 Oral: Lossless or Quantized Boosting with Integer Arithmetic »
Richard Nock · Robert C Williamson -
2019 Oral: Monge blunts Bayes: Hardness Results for Adversarial Training »
Zac Cranko · Aditya Menon · Richard Nock · Cheng Soon Ong · Zhan Shi · Christian Walder -
2018 Poster: Variational Network Inference: Strong and Stable with Concrete Support »
Amir Dezfouli · Edwin Bonilla · Richard Nock -
2018 Oral: Variational Network Inference: Strong and Stable with Concrete Support »
Amir Dezfouli · Edwin Bonilla · Richard Nock -
2017 Workshop: Human in the Loop Machine Learning »
Richard Nock · Cheng Soon Ong