Timezone: »
While the objective in traditional multi-armed bandit problems is to find the arm with the highest mean, in many settings, finding an arm that best captures information about other arms is of interest. This objective, however, requires learning the underlying correlation structure and not just the means. Sensors placement for industrial surveillance and cellular network monitoring are a few applications, where the underlying correlation structure plays an important role. Motivated by such applications, we formulate the correlated bandit problem, where the objective is to find the arm with the lowest mean-squared error (MSE) in estimating all the arms. To this end, we derive first an MSE estimator based on sample variances/covariances and show that our estimator exponentially concentrates around the true MSE. Under a best-arm identification framework, we propose a successive rejects type algorithm and provide bounds on the probability of error in identifying the best arm. Using minimax theory, we also derive fundamental performance limits for the correlated bandit problem.
Author Information
Vinay Praneeth Boda (LinkedIn Corp.)
Prashanth L.A. (IIT Madras)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Correlated bandits or: How to minimize mean-squared error online »
Thu Jun 13th 01:30 -- 04:00 AM Room Pacific Ballroom
More from the Same Authors
-
2020 Poster: Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed distributions »
Prashanth L.A. · Krishna Jagannathan · Ravi Kolla