It is wellknown that the expressivity of a neural network depends on its architecture, with deeper networks expressing more complex functions. In the case of networks that compute piecewise linear functions, such as those with ReLU activation, the number of distinct linear regions is a natural measure of expressivity. It is possible to construct networks for which the number of linear regions grows exponentially with depth, or with merely a single region; it is not clear where within this range most networks fall in practice, either before or after training. In this paper, we provide a mathematical framework to count the number of linear regions of a piecewise linear network and measure the volume of the boundaries between these regions. In particular, we prove that for networks at initialization, the average number of regions along any onedimensional subspace grows linearly in the total number of neurons, far below the exponential upper bound. We also find that the average distance to the nearest region boundary at initialization scales like the inverse of the number of neurons. Our theory suggests that, even after training, the number of linear regions is far below exponential, an intuition that matches our empirical observations. We conclude that the practical expressivity of neural networks is likely far below that of the theoretical maximum, and that this gap can be quantified.
Author Information
Boris Hanin (Texas A&M and Facebook AI Research)
David Rolnick (University of Pennsylvania)
Related Events (a corresponding poster, oral, or spotlight)

2019 Poster: Complexity of Linear Regions in Deep Networks »
Wed Jun 12th 06:30  09:00 PM Room Pacific Ballroom
More from the Same Authors

2019 Workshop: Climate Change: How Can AI Help? »
David Rolnick · Alexandre Lacoste · Tegan Maharaj · Jennifer Chayes · Yoshua Bengio