Timezone: »

Active Hypothesis Testing: An Information Theoretic (re)View
Tara Javidi

Mon Jun 10 03:45 PM -- 06:00 PM (PDT) @ Hall B

This tutorial revisits the problem of active hypothesis testing: a classical problem in statistics in which a decision maker is responsible to actively and dynamically collect data/samples so as to enhance the information about an underlying phenomena of interest while accounting for the cost of communication, sensing, or data collection. The decision maker must rely on the current information state to constantly (re-)evaluate the trade-off between the precision and the cost of various actions. This tutorial explores an often overlooked connection between active hypothesis testing and feedback information theory. This connection, we argue, has significant implications for next generation of information acquisition and machine learning algorithms where data is collected actively and/or by cooperative yet local agents.

In the first part of the talk, we discuss the history of active hypothesis testing (and experiment design) in statistics and the seminal contributions by Blackwell, Chernoff, De Groot, and Stein. In the second part of the talk, we discuss the information theoretic notions of acquisition rate and reliability (and their fundamental trade-off) as well as Extrinsic Jensen-Shannon divergence. We also discuss a class of algorithms based on posterior matching, a capacity-achieving feedback scheme for channel coding. We will illustrate the utility of these information theoretic notions, analysis as well as insights and algorithms for a number of important practically relevant problems such as measurement-dependent noisy search and decentralized Bayesian federated learning.

Author Information

Tara Javidi (University of California San Diego)

More from the Same Authors

  • 2022 Poster: Instance Dependent Regret Analysis of Kernelized Bandits »
    Shubhanshu Shekhar · Tara Javidi
  • 2022 Spotlight: Instance Dependent Regret Analysis of Kernelized Bandits »
    Shubhanshu Shekhar · Tara Javidi
  • 2020 Poster: Adaptive Sampling for Estimating Probability Distributions »
    Shubhanshu Shekhar · Tara Javidi · Mohammad Ghavamzadeh
  • 2019 : Poster Session 1 (all papers) »
    Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel
  • 2018 Poster: Active Learning with Logged Data »
    Songbai Yan · Kamalika Chaudhuri · Tara Javidi
  • 2018 Oral: Active Learning with Logged Data »
    Songbai Yan · Kamalika Chaudhuri · Tara Javidi