Timezone: »
The field of Machine Learning has advanced considerably in recent years, but mostly in well-defined domains using huge amounts of human-labeled training data. Machines can recognize objects in images and translate text, but they must be trained with more images and text than a person can see in nearly a lifetime. Generating the necessary training data sets can require an enormous human effort. Active ML aims to address this issue by designing learning algorithms that automatically and adaptively select the most informative data for labeling so that human time is not wasted labeling irrelevant, redundant, or trivial examples. This tutorial will overview applications and provide an introduction to basic theory and algorithms for active machine learning. It will particularly focus on provably sound active learning algorithms and quantify the reduction of labeled training data required for learning.
Author Information
Robert Nowak (University of Wisconsion-Madison)

Robert Nowak holds the Nosbusch Professorship in Engineering at the University of Wisconsin-Madison, where his research focuses on signal processing, machine learning, optimization, and statistics.
Steve Hanneke (TTIC)

Steve Hanneke is a Research Assistant Professor at the Toyota Technological Institute at Chicago. His research explores the theory of machine learning: designing new learning algorithms capable of learning from fewer samples, understanding the benefits and capabilities of interactive machine learning, developing new perspectives on transfer learning and life-long learning, and revisiting the basic probabilistic assumptions at the foundation of learning theory. Steve earned a Bachelor of Science degree in Computer Science from UIUC in 2005 and a Ph.D. in Machine Learning from Carnegie Mellon University in 2009 with a dissertation on the theoretical foundations of active learning.
More from the Same Authors
-
2021 : On the Sparsity of Deep Neural Networks in the Overparameterized Regime: An Empirical Study »
Rahul Parhi · Jack Wolf · Robert Nowak -
2023 : Algorithm Selection for Deep Active Learning with Imbalanced Datasets »
Jifan Zhang · Shuai Shao · Saurabh Verma · Robert Nowak -
2023 : LabelBench: A Comprehensive Framework for Benchmarking Label-Efficient Learning »
Jifan Zhang · Yifang Chen · Gregory Canal · Stephen Mussmann · Yinglun Zhu · Simon Du · Kevin Jamieson · Robert Nowak -
2023 : Looped Transformers are Better at Learning Learning Algorithms »
Liu Yang · Kangwook Lee · Robert Nowak · Dimitris Papailiopoulos -
2023 : SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits »
Subhojyoti Mukherjee · Qiaomin Xie · Josiah Hanna · Robert Nowak -
2023 : A Representer Theorem for Vector-Valued Neural Networks: Insights on Weight Decay Training and Widths of Deep Neural Networks »
Joseph Shenouda · Rahul Parhi · Kangwook Lee · Robert Nowak -
2023 Oral: A Fully First-Order Method for Stochastic Bilevel Optimization »
Jeongyeol Kwon · Dohyun Kwon · Stephen Wright · Robert Nowak -
2023 Poster: A Fully First-Order Method for Stochastic Bilevel Optimization »
Jeongyeol Kwon · Dohyun Kwon · Stephen Wright · Robert Nowak -
2023 Poster: Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization and Detection »
Haoyue Bai · Gregory Canal · Xuefeng Du · Jeongyeol Kwon · Robert Nowak · Sharon Li -
2023 Poster: Adversarially Robust PAC Learnability of Real-Valued Functions »
Idan Attias · Steve Hanneke -
2022 Poster: GALAXY: Graph-based Active Learning at the Extreme »
Jifan Zhang · Julian Katz-Samuels · Robert Nowak -
2022 Spotlight: GALAXY: Graph-based Active Learning at the Extreme »
Jifan Zhang · Julian Katz-Samuels · Robert Nowak -
2022 Poster: Training OOD Detectors in their Natural Habitats »
Julian Katz-Samuels · Julia Nakhleh · Robert Nowak · Sharon Li -
2022 Spotlight: Training OOD Detectors in their Natural Habitats »
Julian Katz-Samuels · Julia Nakhleh · Robert Nowak · Sharon Li -
2020 Poster: Robust Outlier Arm Identification »
Yinglun Zhu · Sumeet Katariya · Robert Nowak -
2019 Poster: Bilinear Bandits with Low-rank Structure »
Kwang-Sung Jun · Rebecca Willett · Stephen Wright · Robert Nowak -
2019 Oral: Bilinear Bandits with Low-rank Structure »
Kwang-Sung Jun · Rebecca Willett · Stephen Wright · Robert Nowak -
2017 Poster: Algebraic Variety Models for High-Rank Matrix Completion »
Greg Ongie · Laura Balzano · Rebecca Willett · Robert Nowak -
2017 Talk: Algebraic Variety Models for High-Rank Matrix Completion »
Greg Ongie · Laura Balzano · Rebecca Willett · Robert Nowak