Timezone: »
Making sense of Wasserstein distances between discrete measures in high-dimensional settings remains a challenge. Recent work has advocated a two-step approach to improve robustness and facilitate the computation of optimal transport, using for instance projections on random real lines, or a preliminary quantization of the measures to reduce the size of their support. We propose in this work a max-min'' robust variant of the Wasserstein distance by considering the maximal possible distance that can be realized between two measures, assuming they can be projected orthogonally on a lower k-dimensional subspace. Alternatively, we show that the corresponding
min-max'' OT problem has a tight convex relaxation which can be cast as that of finding an optimal transport plan with a low transportation cost, where the cost is alternatively defined as the sum of the k largest eigenvalues of the second order moment matrix of the displacements (or matchings) corresponding to that plan (the usual OT definition only considers the trace of that matrix). We show that both quantities inherit several favorable properties from the OT geometry. We propose two algorithms to compute the latter formulation using entropic regularization, and illustrate the interest of this approach empirically.
Author Information
François-Pierre Paty (ENSAE Paris)
Marco Cuturi (Google and CREST/ENSAE)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Subspace Robust Wasserstein Distances »
Tue. Jun 11th 11:00 -- 11:20 PM Room Room 201
More from the Same Authors
-
2022 Poster: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Spotlight: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 Poster: Low-Rank Sinkhorn Factorization »
Meyer Scetbon · Marco Cuturi · Gabriel Peyré -
2021 Spotlight: Low-Rank Sinkhorn Factorization »
Meyer Scetbon · Marco Cuturi · Gabriel Peyré -
2020 Poster: Regularized Optimal Transport is Ground Cost Adversarial »
François-Pierre Paty · Marco Cuturi -
2020 Poster: Missing Data Imputation using Optimal Transport »
Boris Muzellec · Julie Josse · Claire Boyer · Marco Cuturi -
2020 Poster: Supervised Quantile Normalization for Low Rank Matrix Factorization »
Marco Cuturi · Olivier Teboul · Jonathan Niles-Weed · Jean-Philippe Vert -
2020 Poster: Debiased Sinkhorn barycenters »
Hicham Janati · Marco Cuturi · Alexandre Gramfort