Timezone: »

 
Poster
Online Control with Adversarial Disturbances
Naman Agarwal · Brian Bullins · Elad Hazan · Sham Kakade · Karan Singh

Thu Jun 13 06:30 PM -- 09:00 PM (PDT) @ Pacific Ballroom #155

We study the control of linear dynamical systems with adversarial disturbances, as opposed to statistical noise. We present an efficient algorithm that achieves nearly-tight regret bounds in this setting. Our result generalizes upon previous work in two main aspects: the algorithm can accommodate adversarial noise in the dynamics, and can handle general convex costs.

Author Information

Naman Agarwal (Google AI Princeton)
Brian Bullins (Princeton University)
Elad Hazan (Princeton University)
Sham Kakade (University of Washington)

Sham Kakade is a Gordon McKay Professor of Computer Science and Statistics at Harvard University and a co-director of the recently announced Kempner Institute. He works on the mathematical foundations of machine learning and AI. Sham's thesis helped in laying the statistical foundations of reinforcement learning. With his collaborators, his additional contributions include: one of the first provably efficient policy search methods, Conservative Policy Iteration, for reinforcement learning; developing the mathematical foundations for the widely used linear bandit models and the Gaussian process bandit models; the tensor and spectral methodologies for provable estimation of latent variable models; the first sharp analysis of the perturbed gradient descent algorithm, along with the design and analysis of numerous other convex and non-convex algorithms. He is the recipient of the ICML Test of Time Award (2020), the IBM Pat Goldberg best paper award (in 2007), INFORMS Revenue Management and Pricing Prize (2014). He has been program chair for COLT 2011. Sham was an undergraduate at Caltech, where he studied physics and worked under the guidance of John Preskill in quantum computing. He then completed his Ph.D. in computational neuroscience at the Gatsby Unit at University College London, under the supervision of Peter Dayan. He was a postdoc at the Dept. of Computer Science, University of Pennsylvania , where he broadened his studies to include computational game theory and economics from the guidance of Michael Kearns. Sham has been a Principal Research Scientist at Microsoft Research, New England, an associate professor at the Department of Statistics, Wharton, UPenn, and an assistant professor at the Toyota Technological Institute at Chicago.

Karan Singh (Princeton University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors