Timezone: »

Diagnosing Bottlenecks in Deep Q-learning Algorithms
Justin Fu · Aviral Kumar · Matthew Soh · Sergey Levine

Tue Jun 11 06:30 PM -- 09:00 PM (PDT) @ Pacific Ballroom #44

Q-learning methods are a common class of algorithms used in reinforcement learning (RL). However, their behavior with function approximation, especially with neural networks, is poorly understood theoretically and empirically. In this work, we aim to experimentally investigate potential issues in Q-learning, by means of a "unit testing" framework where we can utilize oracles to disentangle sources of error. Specifically, we investigate questions related to function approximation, sampling error and nonstationarity, and where available, verify if trends found in oracle settings hold true with deep RL methods. We find that large neural network architectures have many benefits with regards to learning stability; offer several practical compensations for overfitting; and develop a novel sampling method based on explicitly compensating for function approximation error that yields fair improvement on high-dimensional continuous control domains.

Author Information

Justin Fu (University of California, Berkeley)
Aviral Kumar (UC Berkeley)
Matthew Soh (UC Berkeley)
Sergey Levine (UC Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors