Timezone: »
Understanding generalization in reinforcement learning (RL) is a significant challenge, as many common assumptions of traditional supervised learning theory do not apply. We focus on the special class of reparameterizable RL problems, where the trajectory distribution can be decomposed using the reparametrization trick. For this problem class, estimating the expected return is efficient and the trajectory can be computed deterministically given peripheral random variables, which enables us to study reparametrizable RL using supervised learning and transfer learning theory. Through these relationships, we derive guarantees on the gap between the expected and empirical return for both intrinsic and external errors, based on Rademacher complexity as well as the PAC-Bayes bound. Our bound suggests the generalization capability of reparameterizable RL is related to multiple factors including ``smoothness'' of the environment transition, reward and agent policy function class. We also empirically verify the relationship between the generalization gap and these factors through simulations.
Author Information
Huan Wang (Salesforce Research)
Stephan Zheng (Salesforce Research)
Caiming Xiong (Salesforce)
Richard Socher (Salesforce)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: On the Generalization Gap in Reparameterizable Reinforcement Learning »
Wed. Jun 12th 09:25 -- 09:30 PM Room Hall B
More from the Same Authors
-
2021 : Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning »
Tengyang Xie · Nan Jiang · Huan Wang · Caiming Xiong · Yu Bai -
2021 : Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games »
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong -
2023 : Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection »
Yu Bai · Fan Chen · Huan Wang · Caiming Xiong · Song Mei -
2023 : Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight »
Jiacheng Guo · Minshuo Chen · Huan Wang · Caiming Xiong · Mengdi Wang · Yu Bai -
2023 Poster: Lower Bounds for Learning in Revealing POMDPs »
Fan Chen · Huan Wang · Caiming Xiong · Song Mei · Yu Bai -
2023 Poster: Improved Online Conformal Prediction via Strongly Adaptive Online Learning »
Aadyot Bhatnagar · Huan Wang · Caiming Xiong · Yu Bai -
2022 Poster: BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation »
Junnan Li · DONGXU LI · Caiming Xiong · Steven Hoi -
2022 Spotlight: BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation »
Junnan Li · DONGXU LI · Caiming Xiong · Steven Hoi -
2021 : Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games »
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong -
2021 Poster: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Poster: How Important is the Train-Validation Split in Meta-Learning? »
Yu Bai · Minshuo Chen · Pan Zhou · Tuo Zhao · Jason Lee · Sham Kakade · Huan Wang · Caiming Xiong -
2021 Spotlight: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Spotlight: How Important is the Train-Validation Split in Meta-Learning? »
Yu Bai · Minshuo Chen · Pan Zhou · Tuo Zhao · Jason Lee · Sham Kakade · Huan Wang · Caiming Xiong -
2021 Poster: Don’t Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2021 Spotlight: Don’t Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2020 Poster: Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills »
Victor Campos · Alexander Trott · Caiming Xiong · Richard Socher · Xavier Giro-i-Nieto · Jordi Torres -
2019 Poster: Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting »
Xilai Li · Yingbo Zhou · Tianfu Wu · Richard Socher · Caiming Xiong -
2019 Poster: Taming MAML: Efficient unbiased meta-reinforcement learning »
Hao Liu · Richard Socher · Caiming Xiong -
2019 Oral: Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting »
Xilai Li · Yingbo Zhou · Tianfu Wu · Richard Socher · Caiming Xiong -
2019 Oral: Taming MAML: Efficient unbiased meta-reinforcement learning »
Hao Liu · Richard Socher · Caiming Xiong