Poster
Distributed Learning over Unreliable Networks
Chen Yu · Hanlin Tang · Cedric Renggli · Simon Kassing · Ankit Singla · Dan Alistarh · Ce Zhang · Ji Liu

Thu Jun 13th 06:30 -- 09:00 PM @ Pacific Ballroom #97

Most of today's distributed machine learning systems assume {\em reliable networks}: whenever two machines exchange information (e.g., gradients or models), the network should guarantee the delivery of the message. At the same time, recent work exhibits the impressive tolerance of machine learning algorithms to errors or noise arising from relaxed communication or synchronization. In this paper, we connect these two trends, and consider the following question: {\em Can we design machine learning systems that are tolerant to network unreliability during training?} With this motivation, we focus on a theoretical problem of independent interest---given a standard distributed parameter server architecture, if every communication between the worker and the server has a non-zero probability $p$ of being dropped, does there exist an algorithm that still converges, and at what speed? In the context of prior art, this problem can be phrased as {\em distributed learning over random topologies}. The technical contribution of this paper is a novel theoretical analysis proving that distributed learning over random topologies can achieve comparable convergence rate to centralized or distributed learning over reliable networks. Further, we prove that the influence of the packet drop rate diminishes with the growth of the number of parameter servers. We map this theoretical result onto a real-world scenario, training deep neural networks over an unreliable network layer, and conduct network simulation to validate the system improvement by allowing the networks to be unreliable.

Author Information

Chen Yu (University of Rochester)
Hanlin Tang (University of Rochester)
Cedric Renggli (ETH Zurich)
Simon Kassing (ETH Zurich)
Ankit Singla (ETH Zurich)
Dan Alistarh (IST Austria & ETH Zurich)
Ce Zhang (ETH Zurich)
Ji Liu (Kwai Seattle AI lab, University of Rochester)

Ji Liu is an Assistant Professor in Computer Science, Electrical and Computer Engineering, and Goergen Institute for Data Science at University of Rochester (UR). He received his Ph.D. in Computer Science from University of Wisconsin-Madison. His research interests focus on distributed optimization and machine learning. He also has rich experiences in various data analytics applications in healthcare, bioinformatics, social network, computer vision, etc. His recent research focus is on asynchronous parallel optimization, sparse learning (compressed sensing) theory and algorithm, structural model estimation, online learning, abnormal event detection, feature / pattern extraction, etc. He published more than 40 papers in top CS journals and conferences including JMLR, SIOPT, TPAMI, TIP, TKDD, NIPS, ICML, UAI, SIGKDD, ICCV, CVPR, ECCV, AAAI, IJCAI, ACM MM, etc. He won the award of Best Paper honorable mention at SIGKDD 2010 and the award of Best Student Paper award at UAI 2015.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors