Timezone: »
We introduce a novel method to combat label noise when training deep neural networks for classification. We propose a loss function that permits abstention during training thereby allowing the DNN to abstain on confusing samples while continuing to learn and improve classification performance on the non-abstained samples. We show how such a deep abstaining classifier (DAC) can be used for robust learning in the presence of different types of label noise. In the case of structured or systematic label noise – where noisy training labels or confusing examples are correlated with underlying features of the data– training with abstention enables representation learning for features that are associated with unreliable labels. In the case of unstructured (arbitrary) label noise, abstention during training enables the DAC to be used as an effective data cleaner by identifying samples that are likely to have label noise. We provide analytical results on the loss function behavior that enable dynamic adaption of abstention rates based on learning progress during training. We demonstrate the utility of the deep abstaining classifier for various image classification tasks under different types of label noise; in the case of arbitrary label noise, we show significant im- provements over previously published results on multiple image benchmarks.
Author Information
Sunil Thulasidasan (Los Alamos National Laboratory & University of Washington)
Tanmoy Bhattacharya (Los Alamos National Laboratory)
Jeff Bilmes (UW)
Gopinath Chennupati (Los Alamos National Laboratory)
Jamal Mohd-Yusof (Los Alamos National Laboratory)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Combating Label Noise in Deep Learning using Abstention »
Tue. Jun 11th 07:10 -- 07:15 PM Room Hall A
More from the Same Authors
-
2021 : Tighter m-DPP Coreset Sample Complexity Bounds »
Gantavya Bhatt · Jeff Bilmes -
2023 : Accelerating Batch Active Learning Using Continual Learning Techniques »
Gantavya Bhatt · Arnav M Das · · Rui Yang · Vianne Gao · Jeff Bilmes -
2021 : Tighter m-DPP Coreset Sample Complexity Bounds »
Jeff Bilmes · Gantavya Bhatt -
2021 : More Information, Less Data »
Jeff Bilmes · Jeff Bilmes -
2021 : Introduction by the Organizers »
Abir De · Rishabh Iyer · Ganesh Ramakrishnan · Jeff Bilmes -
2021 Workshop: Subset Selection in Machine Learning: From Theory to Applications »
Rishabh Iyer · Abir De · Ganesh Ramakrishnan · Jeff Bilmes -
2020 Poster: Coresets for Data-efficient Training of Machine Learning Models »
Baharan Mirzasoleiman · Jeff Bilmes · Jure Leskovec -
2020 Poster: Time-Consistent Self-Supervision for Semi-Supervised Learning »
Tianyi Zhou · Shengjie Wang · Jeff Bilmes -
2019 : Jeff Bilmes: Deep Submodular Synergies »
Jeff Bilmes -
2019 : Spotlight »
Tyler Scott · Kiran Thekumparampil · Jonathan Aigrain · Rene Bidart · Priyadarshini Panda · Dian Ang Yap · Yaniv Yacoby · Raphael Gontijo Lopes · Alberto Marchisio · Erik Englesson · Wanqian Yang · Moritz Graule · Yi Sun · Daniel Kang · Mike Dusenberry · Min Du · Hartmut Maennel · Kunal Menda · Vineet Edupuganti · Luke Metz · David Stutz · Vignesh Srinivasan · Timo Sämann · Vineeth N Balasubramanian · Sina Mohseni · Rob Cornish · Judith Butepage · Zhangyang Wang · Bai Li · Bo Han · Honglin Li · Maksym Andriushchenko · Lukas Ruff · Meet P. Vadera · Yaniv Ovadia · Sunil Thulasidasan · Disi Ji · Gang Niu · Saeed Mahloujifar · Aviral Kumar · SANGHYUK CHUN · Dong Yin · Joyce Xu Xu · Hugo Gomes · Raanan Rohekar -
2019 Poster: Bias Also Matters: Bias Attribution for Deep Neural Network Explanation »
Shengjie Wang · Tianyi Zhou · Jeff Bilmes -
2019 Oral: Bias Also Matters: Bias Attribution for Deep Neural Network Explanation »
Shengjie Wang · Tianyi Zhou · Jeff Bilmes -
2019 Poster: Jumpout : Improved Dropout for Deep Neural Networks with ReLUs »
Shengjie Wang · Tianyi Zhou · Jeff Bilmes -
2019 Oral: Jumpout : Improved Dropout for Deep Neural Networks with ReLUs »
Shengjie Wang · Tianyi Zhou · Jeff Bilmes -
2018 Poster: Constrained Interacting Submodular Groupings »
Andrew Cotter · Mahdi Milani Fard · Seungil You · Maya Gupta · Jeff Bilmes -
2018 Poster: Greed is Still Good: Maximizing Monotone Submodular+Supermodular (BP) Functions »
Wenruo Bai · Jeff Bilmes -
2018 Oral: Constrained Interacting Submodular Groupings »
Andrew Cotter · Mahdi Milani Fard · Seungil You · Maya Gupta · Jeff Bilmes -
2018 Oral: Greed is Still Good: Maximizing Monotone Submodular+Supermodular (BP) Functions »
Wenruo Bai · Jeff Bilmes