Timezone: »
Poster
Random Shuffling Beats SGD after Finite Epochs
Jeff HaoChen · Suvrit Sra
A long-standing problem in stochastic optimization is proving that \rsgd, the without-replacement version of \sgd, converges faster than the usual with-replacement \sgd. Building upon~\citep{gurbuzbalaban2015random}, we present the \emph{first} (to our knowledge) non-asymptotic results for this problem by proving that after a reasonable number of epochs \rsgd converges faster than \sgd. Specifically, we prove that for strongly convex, second-order smooth functions, the iterates of \rsgd converge to the optimal solution as $\mathcal{O}(\nicefrac{1}{T^2} + \nicefrac{n^3}{T^3})$, where $n$ is the number of components in the objective, and $T$ is number of iterations. This result implies that after $\mathcal{O}(\sqrt{n})$ epochs, \rsgd is \emph{strictly better} than \sgd (which converges as $\mathcal{O}(\nicefrac{1}{T})$). The key step toward showing this better dependence on $T$ is the introduction of $n$ into the bound; and as our analysis shows, in general a dependence on $n$ is unavoidable without further changes. To understand how \rsgd works in practice, we further explore two empirically useful settings: data sparsity and over-parameterization. For sparse data, \rsgd has the rate $\mathcal{O}\left(\frac{1}{T^2}\right)$, again strictly better than \sgd. Under a setting closely related to over-parameterization, \rsgd is shown to converge faster than \sgd after any \emph{arbitrary} number of iterations. Finally, we extend the analysis of \rsgd to smooth non-convex and convex functions.
Author Information
Jeff HaoChen (Tsinghua University)
Suvrit Sra (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Random Shuffling Beats SGD after Finite Epochs »
Wed. Jun 12th through Thu the 13th Room Room 103
More from the Same Authors
-
2023 Poster: Global optimality for Euclidean CCCP under Riemannian convexity »
Melanie Weber · Suvrit Sra -
2023 Poster: On the Training Instability of Shuffling SGD with Batch Normalization »
David X. Wu · Chulhee Yun · Suvrit Sra -
2022 : Sign and Basis Invariant Networks for Spectral Graph Representation Learning »
Derek Lim · Joshua Robinson · Lingxiao Zhao · Tess Smidt · Suvrit Sra · Haggai Maron · Stefanie Jegelka -
2022 Poster: Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity »
Jingzhao Zhang · Hongzhou Lin · Subhro Das · Suvrit Sra · Ali Jadbabaie -
2022 Spotlight: Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity »
Jingzhao Zhang · Hongzhou Lin · Subhro Das · Suvrit Sra · Ali Jadbabaie -
2022 Poster: Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective »
Jingzhao Zhang · Haochuan Li · Suvrit Sra · Ali Jadbabaie -
2022 Poster: Understanding the unstable convergence of gradient descent »
Kwangjun Ahn · Jingzhao Zhang · Suvrit Sra -
2022 Spotlight: Understanding the unstable convergence of gradient descent »
Kwangjun Ahn · Jingzhao Zhang · Suvrit Sra -
2022 Spotlight: Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective »
Jingzhao Zhang · Haochuan Li · Suvrit Sra · Ali Jadbabaie -
2021 Poster: Provably Efficient Algorithms for Multi-Objective Competitive RL »
Tiancheng Yu · Yi Tian · Jingzhao Zhang · Suvrit Sra -
2021 Poster: Online Learning in Unknown Markov Games »
Yi Tian · Yuanhao Wang · Tiancheng Yu · Suvrit Sra -
2021 Spotlight: Online Learning in Unknown Markov Games »
Yi Tian · Yuanhao Wang · Tiancheng Yu · Suvrit Sra -
2021 Oral: Provably Efficient Algorithms for Multi-Objective Competitive RL »
Tiancheng Yu · Yi Tian · Jingzhao Zhang · Suvrit Sra -
2021 Poster: Three Operator Splitting with a Nonconvex Loss Function »
Alp Yurtsever · Varun Mangalick · Suvrit Sra -
2021 Spotlight: Three Operator Splitting with a Nonconvex Loss Function »
Alp Yurtsever · Varun Mangalick · Suvrit Sra -
2020 Poster: Strength from Weakness: Fast Learning Using Weak Supervision »
Joshua Robinson · Stefanie Jegelka · Suvrit Sra -
2020 Poster: Complexity of Finding Stationary Points of Nonconvex Nonsmooth Functions »
Jingzhao Zhang · Hongzhou Lin · Stefanie Jegelka · Suvrit Sra · Ali Jadbabaie -
2020 Poster: Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition »
Chi Jin · Tiancheng Jin · Haipeng Luo · Suvrit Sra · Tiancheng Yu -
2019 Poster: Escaping Saddle Points with Adaptive Gradient Methods »
Matthew Staib · Sashank Jakkam Reddi · Satyen Kale · Sanjiv Kumar · Suvrit Sra -
2019 Oral: Escaping Saddle Points with Adaptive Gradient Methods »
Matthew Staib · Sashank Jakkam Reddi · Satyen Kale · Sanjiv Kumar · Suvrit Sra -
2019 Poster: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Oral: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher