Timezone: »
We present a general and modular method for privacy-preserving Bayesian inference for Poisson factorization, a broad class of models that includes some of the most widely used models in the social sciences. Our method satisfies limited-precision local privacy, a generalization of local differential privacy that we introduce to formulate appropriate privacy guarantees for sparse count data. We present an MCMC algorithm that approximates the posterior distribution over the latent variables conditioned on data that has been locally privatized by the geometric mechanism. Our method is based on two insights: 1) a novel reinterpretation of the geometric mechanism in terms of the Skellam distribution and 2) a general theorem that relates the Skellam and Bessel distributions. We demonstrate our method's utility using two case studies that involve real-world email data. We show that our method consistently outperforms the commonly used naive approach, wherein inference proceeds as usual, treating the locally privatized data as if it were not privatized.
Author Information
Aaron Schein (UMass Amherst)
Steven Wu (University of Minnesota)
Alexandra Schofield (Cornell University)
Mingyuan Zhou (University of Texas at Austin)
Hanna Wallach (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Locally Private Bayesian Inference for Count Models »
Tue. Jun 11th through Wed the 12th Room Room 102
More from the Same Authors
-
2020 : Contributed Talk: Incentivizing Bandit Exploration:Recommendations as Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2020 : Contributed Talk: Causal Feature Discovery through Strategic Modification »
Yahav Bechavod · Steven Wu · Juba Ziani -
2023 Poster: Prototype-oriented unsupervised anomaly detection for multivariate time series »
yuxin li · Wenchao Chen · Bo Chen · Dongsheng Wang · Long Tian · Mingyuan Zhou -
2023 Poster: Bayesian Progressive Deep Topic Model with Knowledge Informed Textual Data Coarsening Process »
Zhibin Duan · Xinyang Liu · Yudi Su · Yishi Xu · Bo Chen · Mingyuan Zhou -
2023 Poster: Learning to Jump: Thinning and Thickening Latent Counts for Generative Modeling »
Tianqi Chen · Mingyuan Zhou -
2023 Poster: POUF: Prompt-Oriented Unsupervised Fine-tuning for Large Pre-trained Models »
Korawat Tanwisuth · Shujian Zhang · Huangjie Zheng · Pengcheng He · Mingyuan Zhou -
2022 Poster: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2022 Poster: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2022 Poster: Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning »
Shentao Yang · Yihao Feng · Shujian Zhang · Mingyuan Zhou -
2022 Spotlight: Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning »
Shentao Yang · Yihao Feng · Shujian Zhang · Mingyuan Zhou -
2021 Poster: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Spotlight: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Poster: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2021 Poster: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2020 Poster: New Oracle-Efficient Algorithms for Private Synthetic Data Release »
Giuseppe Vietri · Grace Tian · Mark Bun · Thomas Steinke · Steven Wu -
2020 Poster: Structured Linear Contextual Bandits: A Sharp and Geometric Smoothed Analysis »
Vidyashankar Sivakumar · Steven Wu · Arindam Banerjee -
2020 Poster: Privately Learning Markov Random Fields »
Huanyu Zhang · Gautam Kamath · Janardhan Kulkarni · Steven Wu -
2020 Poster: Private Query Release Assisted by Public Data »
Raef Bassily · Albert Cheu · Shay Moran · Aleksandar Nikolov · Jonathan Ullman · Steven Wu -
2020 Poster: Thompson Sampling via Local Uncertainty »
Zhendong Wang · Mingyuan Zhou -
2020 Poster: Bayesian Graph Neural Networks with Adaptive Connection Sampling »
Arman Hasanzadeh · Ehsan Hajiramezanali · Shahin Boluki · Mingyuan Zhou · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2020 Poster: Oracle Efficient Private Non-Convex Optimization »
Seth Neel · Aaron Roth · Giuseppe Vietri · Steven Wu -
2020 Poster: Private Reinforcement Learning with PAC and Regret Guarantees »
Giuseppe Vietri · Borja de Balle Pigem · Akshay Krishnamurthy · Steven Wu -
2020 Poster: Recurrent Hierarchical Topic-Guided RNN for Language Generation »
Dandan Guo · Bo Chen · Ruiying Lu · Mingyuan Zhou -
2019 Poster: Fair Regression: Quantitative Definitions and Reduction-Based Algorithms »
Alekh Agarwal · Miroslav Dudik · Steven Wu -
2019 Poster: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Oral: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Oral: Fair Regression: Quantitative Definitions and Reduction-Based Algorithms »
Alekh Agarwal · Miroslav Dudik · Steven Wu -
2019 Poster: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2019 Oral: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2019 Poster: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2019 Oral: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2018 Poster: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Poster: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Oral: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Oral: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Poster: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2018 Oral: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2017 Poster: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou -
2017 Talk: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou