Timezone: »
Recent work on the representation of functions on sets has considered the use of summation in a latent space to enforce permutation invariance. In particular, it has been conjectured that the dimension of this latent space may remain fixed as the cardinality of the sets under consideration increases. However, we demonstrate that the analysis leading to this conjecture requires mappings which are highly discontinuous and argue that this is only of limited practical use. Motivated by this observation, we prove that an implementation of this model via continuous mappings (as provided by e.g. neural networks or Gaussian processes) actually imposes a constraint on the dimensionality of the latent space. Practical universal function representation for set inputs can only be achieved with a latent dimension at least the size of the maximum number of input elements.
Author Information
Edward Wagstaff (University of Oxford)
Fabian Fuchs (Oxford Robotics Insitute)
Martin Engelcke (University of Oxford)
Ingmar Posner (University of Oxford)
Michael A Osborne (U Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: On the Limitations of Representing Functions on Sets »
Thu. Jun 13th 07:15 -- 07:20 PM Room Grand Ballroom
More from the Same Authors
-
2020 : (#54 / Sess. 2) SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks »
Fabian Fuchs -
2021 : Attacking Graph Classification via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Binxin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2021 : Revisiting Design Choices in Offline Model Based Reinforcement Learning »
Cong Lu · Philip Ball · Jack Parker-Holder · Michael A Osborne · Stephen Roberts -
2022 : Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations »
Cong Lu · Philip Ball · Tim G. J Rudner · Jack Parker-Holder · Michael A Osborne · Yee-Whye Teh -
2022 Poster: Robust Multi-Objective Bayesian Optimization Under Input Noise »
Samuel Daulton · Sait Cakmak · Maximilian Balandat · Michael A Osborne · Enlu Zhou · Eytan Bakshy -
2022 Spotlight: Robust Multi-Objective Bayesian Optimization Under Input Noise »
Samuel Daulton · Sait Cakmak · Maximilian Balandat · Michael A Osborne · Enlu Zhou · Eytan Bakshy -
2021 Workshop: Challenges in Deploying and monitoring Machine Learning Systems »
Alessandra Tosi · Nathan Korda · Michael A Osborne · Stephen Roberts · Andrei Paleyes · Fariba Yousefi -
2021 Poster: Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces »
Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne -
2021 Poster: Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search »
Vu Nguyen · Tam Le · Makoto Yamada · Michael A Osborne -
2021 Spotlight: Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces »
Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne -
2021 Spotlight: Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search »
Vu Nguyen · Tam Le · Makoto Yamada · Michael A Osborne -
2020 : Panel Discussion 1 »
Daniel Cremers · Nemanja Djuric · Ingmar Posner · Dariu Gavrila -
2020 : Q&A: Ingmar Posner »
Ingmar Posner -
2020 : Invited Talk: Under the Radar: System-Level Self-Supervision for Radar Perception and Navigation (Ingmar Posner) »
Ingmar Posner -
2020 Poster: Knowing The What But Not The Where in Bayesian Optimization »
Vu Nguyen · Michael A Osborne -
2020 Poster: Bayesian Optimisation over Multiple Continuous and Categorical Inputs »
Binxin Ru · Ahsan Alvi · Vu Nguyen · Michael A Osborne · Stephen Roberts -
2019 Workshop: Workshop on AI for autonomous driving »
Anna Choromanska · Larry Jackel · Li Erran Li · Juan Carlos Niebles · Adrien Gaidon · Wei-Lun Chao · Ingmar Posner · Wei-Lun (Harry) Chao -
2019 Poster: Automated Model Selection with Bayesian Quadrature »
Henry Chai · Jean-Francois Ton · Michael A Osborne · Roman Garnett -
2019 Poster: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation »
Ahsan Alvi · Binxin Ru · Jan-Peter Calliess · Stephen Roberts · Michael A Osborne -
2019 Oral: Automated Model Selection with Bayesian Quadrature »
Henry Chai · Jean-Francois Ton · Michael A Osborne · Roman Garnett -
2019 Oral: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Oral: Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation »
Ahsan Alvi · Binxin Ru · Jan-Peter Calliess · Stephen Roberts · Michael A Osborne -
2019 Poster: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2019 Oral: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2018 Poster: Fast Information-theoretic Bayesian Optimisation »
Binxin Ru · Michael A Osborne · Mark Mcleod · Diego Granziol -
2018 Poster: Optimization, fast and slow: optimally switching between local and Bayesian optimization »
Mark McLeod · Stephen Roberts · Michael A Osborne -
2018 Oral: Optimization, fast and slow: optimally switching between local and Bayesian optimization »
Mark McLeod · Stephen Roberts · Michael A Osborne -
2018 Oral: Fast Information-theoretic Bayesian Optimisation »
Binxin Ru · Michael A Osborne · Mark Mcleod · Diego Granziol -
2018 Poster: TACO: Learning Task Decomposition via Temporal Alignment for Control »
Kyriacos Shiarlis · Markus Wulfmeier · Sasha Salter · Shimon Whiteson · Ingmar Posner -
2018 Oral: TACO: Learning Task Decomposition via Temporal Alignment for Control »
Kyriacos Shiarlis · Markus Wulfmeier · Sasha Salter · Shimon Whiteson · Ingmar Posner