Timezone: »
Poster
The Value Function Polytope in Reinforcement Learning
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans
We establish geometric and topological properties of the space of value functions in finite state-action Markov decision processes. Our main contribution is the characterization of the nature of its shape: a general polytope (Aigner et al., 2010). To demonstrate this result, we exhibit several properties of the structural relationship between policies and value functions including the line theorem, which shows that the value functions of policies constrained on all but one state describe a line segment. Finally, we use this novel perspective and introduce visualizations to enhance the understanding of the dynamics of reinforcement learning algorithms.
Author Information
Robert Dadashi (Google AI Residency Program)
Marc Bellemare (Google Brain)
Adrien Ali Taiga (Université de Montréal)
Nicolas Le Roux (Google)
Dale Schuurmans (Google / University of Alberta)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: The Value Function Polytope in Reinforcement Learning »
Wed. Jun 12th 12:15 -- 12:20 AM Room Room 104
More from the Same Authors
-
2021 : A functional mirror ascent view of policy gradient methods with function approximation »
Sharan Vaswani · Olivier Bachem · Simone Totaro · Matthieu Geist · Marlos C. Machado · Pablo Samuel Castro · Nicolas Le Roux -
2021 : Offline Reinforcement Learning as Anti-Exploration »
Shideh Rezaeifar · Robert Dadashi · Nino Vieillard · Léonard Hussenot · Olivier Bachem · Olivier Pietquin · Matthieu Geist -
2023 Poster: Bootstrapped Representations in Reinforcement Learning »
Charline Le Lan · Stephen Tu · Mark Rowland · Anna Harutyunyan · Rishabh Agarwal · Marc Bellemare · Will Dabney -
2023 Poster: The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation »
Mark Rowland · Yunhao Tang · Clare Lyle · Remi Munos · Marc Bellemare · Will Dabney -
2023 Poster: Target-based Surrogates for Stochastic Optimization »
Jonathan Lavington · Sharan Vaswani · Reza Babanezhad · Mark Schmidt · Nicolas Le Roux -
2023 Poster: Bigger, Better, Faster: Human-level Atari with human-level efficiency »
Max Schwarzer · Johan Obando Ceron · Aaron Courville · Marc Bellemare · Rishabh Agarwal · Pablo Samuel Castro -
2022 Poster: Continuous Control with Action Quantization from Demonstrations »
Robert Dadashi · Léonard Hussenot · Damien Vincent · Sertan Girgin · Anton Raichuk · Matthieu Geist · Olivier Pietquin -
2022 Poster: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Poster: A Parametric Class of Approximate Gradient Updates for Policy Optimization »
Ramki Gummadi · Saurabh Kumar · Junfeng Wen · Dale Schuurmans -
2022 Spotlight: A Parametric Class of Approximate Gradient Updates for Policy Optimization »
Ramki Gummadi · Saurabh Kumar · Junfeng Wen · Dale Schuurmans -
2022 Spotlight: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Spotlight: Continuous Control with Action Quantization from Demonstrations »
Robert Dadashi · Léonard Hussenot · Damien Vincent · Sertan Girgin · Anton Raichuk · Matthieu Geist · Olivier Pietquin -
2022 Poster: Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning »
Harley Wiltzer · David Meger · Marc Bellemare -
2022 Poster: Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization »
Hanjun Dai · Mengjiao Yang · Yuan Xue · Dale Schuurmans · Bo Dai -
2022 Spotlight: Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization »
Hanjun Dai · Mengjiao Yang · Yuan Xue · Dale Schuurmans · Bo Dai -
2022 Spotlight: Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning »
Harley Wiltzer · David Meger · Marc Bellemare -
2021 Social: RL Social »
Dibya Ghosh · Hager Radi · Derek Li · Alex Ayoub · Erfan Miahi · Rishabh Agarwal · Charline Le Lan · Abhishek Naik · John D. Martin · Shruti Mishra · Adrien Ali Taiga -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Poster: Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization »
Wesley Chung · Valentin Thomas · Marlos C. Machado · Nicolas Le Roux -
2021 Poster: Hyperparameter Selection for Imitation Learning »
Léonard Hussenot · Marcin Andrychowicz · Damien Vincent · Robert Dadashi · Anton Raichuk · Sabela Ramos · Nikola Momchev · Sertan Girgin · Raphael Marinier · Lukasz Stafiniak · Emmanuel Orsini · Olivier Bachem · Matthieu Geist · Olivier Pietquin -
2021 Spotlight: Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization »
Wesley Chung · Valentin Thomas · Marlos C. Machado · Nicolas Le Roux -
2021 Oral: Hyperparameter Selection for Imitation Learning »
Léonard Hussenot · Marcin Andrychowicz · Damien Vincent · Robert Dadashi · Anton Raichuk · Sabela Ramos · Nikola Momchev · Sertan Girgin · Raphael Marinier · Lukasz Stafiniak · Emmanuel Orsini · Olivier Bachem · Matthieu Geist · Olivier Pietquin -
2021 Poster: EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL »
Seyed Kamyar Seyed Ghasemipour · Dale Schuurmans · Shixiang Gu -
2021 Poster: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2021 Poster: Offline Reinforcement Learning with Pseudometric Learning »
Robert Dadashi · Shideh Rezaeifar · Nino Vieillard · Léonard Hussenot · Olivier Pietquin · Matthieu Geist -
2021 Spotlight: EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL »
Seyed Kamyar Seyed Ghasemipour · Dale Schuurmans · Shixiang Gu -
2021 Spotlight: Offline Reinforcement Learning with Pseudometric Learning »
Robert Dadashi · Shideh Rezaeifar · Nino Vieillard · Léonard Hussenot · Olivier Pietquin · Matthieu Geist -
2021 Spotlight: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Energy-Based Processes for Exchangeable Data »
Mengjiao Yang · Bo Dai · Hanjun Dai · Dale Schuurmans -
2020 Poster: ConQUR: Mitigating Delusional Bias in Deep Q-Learning »
DiJia Su · Jayden Ooi · Tyler Lu · Dale Schuurmans · Craig Boutilier -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: An Optimistic Perspective on Offline Deep Reinforcement Learning »
Rishabh Agarwal · Dale Schuurmans · Mohammad Norouzi -
2020 Poster: Scalable Deep Generative Modeling for Sparse Graphs »
Hanjun Dai · Azade Nova · Yujia Li · Bo Dai · Dale Schuurmans -
2020 Poster: Representations for Stable Off-Policy Reinforcement Learning »
Dibya Ghosh · Marc Bellemare -
2019 : Poster Session #1 »
Adrien Ali Taiga · Aniket Anand Deshmukh · Tabish Rashid · Jonathan Binas · Nikolaus Yasui · Vitchyr Pong · Takahisa Imagawa · Jesse Clifton · Siddharth Mysore · Shi-Chun Tsai · Caleb Chuck · Giulia Vezzani · Hannes Bengt Eriksson -
2019 Poster: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Oral: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Poster: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Poster: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Oral: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Oral: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Poster: DeepMDP: Learning Continuous Latent Space Models for Representation Learning »
Carles Gelada · Saurabh Kumar · Jacob Buckman · Ofir Nachum · Marc Bellemare -
2019 Oral: DeepMDP: Learning Continuous Latent Space Models for Representation Learning »
Carles Gelada · Saurabh Kumar · Jacob Buckman · Ofir Nachum · Marc Bellemare -
2017 : Panel Discussion »
Balaraman Ravindran · Chelsea Finn · Alessandro Lazaric · Katja Hofmann · Marc Bellemare -
2017 : Marc G. Bellemare: The role of density models in reinforcement learning »
Marc Bellemare -
2017 Poster: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Talk: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Poster: A Laplacian Framework for Option Discovery in Reinforcement Learning »
Marlos C. Machado · Marc Bellemare · Michael Bowling -
2017 Poster: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Talk: A Laplacian Framework for Option Discovery in Reinforcement Learning »
Marlos C. Machado · Marc Bellemare · Michael Bowling -
2017 Talk: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu