Timezone: »
We consider a model-based approach to perform batch off-policy evaluation in reinforcement learning. Our method takes a mixture-of-experts approach to combine parametric and non-parametric models of the environment such that the final value estimate has the least expected error. We do so by first estimating the local accuracy of each model and then using a planner to select which model to use at every time step as to minimize the return error estimate along entire trajectories. Across a variety of domains, our mixture-based approach outperforms the individual models alone as well as state-of-the-art importance sampling-based estimators.
Author Information
Omer Gottesman (Harvard University)
Yao Liu (Stanford University)
Scott Sussex (Harvard University)
Emma Brunskill (Stanford University)

Emma Brunskill is an associate tenured professor in the Computer Science Department at Stanford University. Brunskill’s lab aims to create AI systems that learn from few samples to robustly make good decisions and is part of the Stanford AI Lab, the Stanford Statistical ML group, and AI Safety @Stanford. Brunskill has received a NSF CAREER award, Office of Naval Research Young Investigator Award, a Microsoft Faculty Fellow award and an alumni impact award from the computer science and engineering department at the University of Washington. Brunskill and her lab have received multiple best paper nominations and awards both for their AI and machine learning work (UAI best paper, Reinforcement Learning and Decision Making Symposium best paper twice) and for their work in Ai of education (Intelligent Tutoring Systems Conference, Educational Data Mining conference x3, CHI).
Finale Doshi-Velez (Harvard University)

Finale Doshi-Velez is a Gordon McKay Professor in Computer Science at the Harvard Paulson School of Engineering and Applied Sciences. She completed her MSc from the University of Cambridge as a Marshall Scholar, her PhD from MIT, and her postdoc at Harvard Medical School. Her interests lie at the intersection of machine learning, healthcare, and interpretability. Selected Additional Shinies: BECA recipient, AFOSR YIP and NSF CAREER recipient; Sloan Fellow; IEEE AI Top 10 to Watch
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Combining parametric and nonparametric models for off-policy evaluation »
Wed. Jun 12th through Thu the 13th Room Room 104
More from the Same Authors
-
2021 : Promises and Pitfalls of Black-Box Concept Learning Models »
· Anita Mahinpei · Justin Clark · Isaac Lage · Finale Doshi-Velez · Weiwei Pan -
2021 : Prediction-focused Mixture Models »
Abhishek Sharma · Sanjana Narayanan · Catherine Zeng · Finale Doshi-Velez -
2021 : Online structural kernel selection for mobile health »
Eura Shin · Predag Klasnja · Susan Murphy · Finale Doshi-Velez -
2021 : Interpretable learning-to-defer for sequential decision-making »
Shalmali Joshi · Sonali Parbhoo · Finale Doshi-Velez -
2021 : Model-based Offline Reinforcement Learning with Local Misspecification »
Kefan Dong · Ramtin Keramati · Emma Brunskill -
2021 : Provably efficient exploration-free transfer RL for near-deterministic latent dynamics »
Yao Liu · Dipendra Misra · Miroslav Dudik · Robert Schapire -
2021 : Estimating Optimal Policy Value in Linear Contextual Bandits beyond Gaussianity »
Jonathan Lee · Weihao Kong · Aldo Pacchiano · Vidya Muthukumar · Emma Brunskill -
2021 : Avoiding Overfitting to the Importance Weights in Offline Policy Optimization »
Yao Liu · Emma Brunskill -
2021 : Interpretable learning-to-defer for sequential decision-making »
Shalmali Joshi · Sonali Parbhoo · Finale Doshi-Velez -
2021 : On formalizing causal off-policy sequential decision-making »
Sonali Parbhoo · Shalmali Joshi · Finale Doshi-Velez -
2021 : Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning »
Andrea Zanette · Martin Wainwright · Emma Brunskill -
2022 : Giving Complex Feedback in Online Student Learning with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 : Giving Feedback on Interactive Student Programs with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 : Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare »
Shengpu Tang · Maggie Makar · Michael Sjoding · Finale Doshi-Velez · Jenna Wiens -
2022 : From Soft Trees to Hard Trees: Gains and Losses »
Xin Zeng · Jiayu Yao · Finale Doshi-Velez · Weiwei Pan -
2022 : Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry »
Mark Penrod · Harrison Termotto · Varshini Reddy · Jiayu Yao · Finale Doshi-Velez · Weiwei Pan -
2023 Poster: The Unintended Consequences of Discount Regularization: Improving Regularization in Certainty Equivalence Reinforcement Learning »
Sarah Rathnam · Sonali Parbhoo · Weiwei Pan · Susan Murphy · Finale Doshi-Velez -
2023 Poster: Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables »
Yaniv Yacoby · Weiwei Pan · Finale Doshi-Velez -
2022 : Giving Complex Feedback in Online Student Learning with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 : Responsible Decision-Making in Batch RL Settings »
Finale Doshi-Velez -
2022 : Invited Talk: Emma Brunskill »
Emma Brunskill -
2021 : Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning »
Andrea Zanette · Martin Wainwright · Emma Brunskill -
2021 : Spotlight »
Zhiwei (Tony) Qin · Xianyuan Zhan · Meng Qi · Ruihan Yang · Philip Ball · Hamsa Bastani · Yao Liu · Xiuwen Wang · Haoran Xu · Tony Z. Zhao · Lili Chen · Aviral Kumar -
2021 : RL Explainability & Interpretability Panel »
Ofra Amir · Finale Doshi-Velez · Alan Fern · Zachary Lipton · Omer Gottesman · Niranjani Prasad -
2021 : [01:50 - 02:35 PM UTC] Invited Talk 3: Interpretability in High Dimensions: Concept Bottlenecks and Beyond »
Finale Doshi-Velez -
2021 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor -
2021 Poster: Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement »
Andrew Ross · Finale Doshi-Velez -
2021 Oral: Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement »
Andrew Ross · Finale Doshi-Velez -
2021 Poster: State Relevance for Off-Policy Evaluation »
Simon Shen · Yecheng Jason Ma · Omer Gottesman · Finale Doshi-Velez -
2021 Spotlight: State Relevance for Off-Policy Evaluation »
Simon Shen · Yecheng Jason Ma · Omer Gottesman · Finale Doshi-Velez -
2020 : Keynote #2 Finale Doshi-Velez »
Finale Doshi-Velez -
2020 Workshop: Theoretical Foundations of Reinforcement Learning »
Emma Brunskill · Thodoris Lykouris · Max Simchowitz · Wen Sun · Mengdi Wang -
2020 Poster: Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions »
Omer Gottesman · Joseph Futoma · Yao Liu · Sonali Parbhoo · Leo Celi · Emma Brunskill · Finale Doshi-Velez -
2020 Poster: Learning Near Optimal Policies with Low Inherent Bellman Error »
Andrea Zanette · Alessandro Lazaric · Mykel Kochenderfer · Emma Brunskill -
2020 Poster: Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling »
Yao Liu · Pierre-Luc Bacon · Emma Brunskill -
2019 Workshop: Exploration in Reinforcement Learning Workshop »
Benjamin Eysenbach · Benjamin Eysenbach · Surya Bhupatiraju · Shixiang Gu · Harrison Edwards · Martha White · Pierre-Yves Oudeyer · Kenneth Stanley · Emma Brunskill -
2019 : Emma Brunskill (Stanford) - Minimizing & Understanding the Data Needed to Learn to Make Good Sequences of Decisions »
Emma Brunskill -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : posters »
Zhengxing Chen · Juan Jose Garau Luis · Ignacio Albert Smet · Aditya Modi · Sabina Tomkins · Riley Simmons-Edler · Hongzi Mao · Alexander Irpan · Hao Lu · Rose Wang · Subhojyoti Mukherjee · Aniruddh Raghu · Syed Arbab Mohd Shihab · Byung Hoon Ahn · Rasool Fakoor · Pratik Chaudhari · Elena Smirnova · Min-hwan Oh · Xiaocheng Tang · Tony Qin · Qingyang Li · Marc Brittain · Ian Fox · Supratik Paul · Xiaofeng Gao · Yinlam Chow · Gabriel Dulac-Arnold · Ofir Nachum · Nikos Karampatziakis · Bharathan Balaji · Supratik Paul · Ali Davody · Djallel Bouneffouf · Himanshu Sahni · Soo Kim · Andrey Kolobov · Alexander Amini · Yao Liu · Xinshi Chen · · Craig Boutilier -
2019 Poster: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2019 Poster: Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds »
Andrea Zanette · Emma Brunskill -
2019 Poster: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2019 Oral: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2019 Oral: Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds »
Andrea Zanette · Emma Brunskill -
2019 Oral: Separable value functions across time-scales »
Joshua Romoff · Peter Henderson · Ahmed Touati · Yann Ollivier · Joelle Pineau · Emma Brunskill -
2018 Poster: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2018 Poster: Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors »
Soumya Ghosh · Jiayu Yao · Finale Doshi-Velez -
2018 Poster: Decoupling Gradient-Like Learning Rules from Representations »
Philip Thomas · Christoph Dann · Emma Brunskill -
2018 Oral: Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors »
Soumya Ghosh · Jiayu Yao · Finale Doshi-Velez -
2018 Oral: Decoupling Gradient-Like Learning Rules from Representations »
Philip Thomas · Christoph Dann · Emma Brunskill -
2018 Oral: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2018 Poster: Problem Dependent Reinforcement Learning Bounds Which Can Identify Bandit Structure in MDPs »
Andrea Zanette · Emma Brunskill -
2018 Oral: Problem Dependent Reinforcement Learning Bounds Which Can Identify Bandit Structure in MDPs »
Andrea Zanette · Emma Brunskill -
2017 Tutorial: Interpretable Machine Learning »
Been Kim · Finale Doshi-Velez