Timezone: »
Physical construction---the ability to compose objects, subject to physical dynamics, to serve some function---is fundamental to human intelligence. We introduce a suite of challenging physical construction tasks inspired by how children play with blocks, such as matching a target configuration, stacking blocks to connect objects together, and creating shelter-like structures over target objects. We examine how a range of deep reinforcement learning agents fare on these challenges, and introduce several new approaches which provide superior performance. Our results show that agents which use structured representations (e.g., objects and scene graphs) and structured policies (e.g., object-centric actions) outperform those which use less structured representations, and generalize better beyond their training when asked to reason about larger scenes. Model-based agents which use Monte-Carlo Tree Search also outperform strictly model-free agents in our most challenging construction problems. We conclude that approaches which combine structured representations and reasoning with powerful learning are a key path toward agents that possess rich intuitive physics, scene understanding, and planning.
Author Information
Victor Bapst (Google DeepMind)
Alvaro Sanchez-Gonzalez (DeepMind)
Carl Doersch (DeepMind)
Kimberly Stachenfeld (Google)
Pushmeet Kohli (DeepMind)
Peter Battaglia (DeepMind)
Jessica Hamrick (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Structured agents for physical construction »
Wed. Jun 12th 06:40 -- 07:00 PM Room Hall B
More from the Same Authors
-
2020 : (#99 / Sess. 2) GraphNets with Spectral Message Passing »
Kimberly Stachenfeld -
2022 : MultiScale MeshGraphNets »
Meire Fortunato · Tobias Pfaff · Peter Wirnsberger · Alexander Pritzel · Peter Battaglia -
2023 : Diffusion Generative Inverse Design »
Marin Vlastelica · Tatiana Lopez-Guevara · Kelsey Allen · Peter Battaglia · Arnaud Doucet · Kimberly Stachenfeld -
2022 Poster: Constraint-based graph network simulator »
Yulia Rubanova · Alvaro Sanchez-Gonzalez · Tobias Pfaff · Peter Battaglia -
2022 Spotlight: Constraint-based graph network simulator »
Yulia Rubanova · Alvaro Sanchez-Gonzalez · Tobias Pfaff · Peter Battaglia -
2021 Poster: Generating images with sparse representations »
Charlie Nash · Jacob Menick · Sander Dieleman · Peter Battaglia -
2021 Oral: Generating images with sparse representations »
Charlie Nash · Jacob Menick · Sander Dieleman · Peter Battaglia -
2020 : Invited Talk: Peter Battaglia (Q&A) »
Peter Battaglia -
2020 : Invited Talk: Peter Battaglia »
Peter Battaglia -
2020 : Panel Discussion »
Jessica Hamrick -
2020 Workshop: Object-Oriented Learning: Perception, Representation, and Reasoning »
Sungjin Ahn · Adam Kosiorek · Jessica Hamrick · Sjoerd van Steenkiste · Yoshua Bengio -
2020 Poster: PolyGen: An Autoregressive Generative Model of 3D Meshes »
Charlie Nash · Yaroslav Ganin · S. M. Ali Eslami · Peter Battaglia -
2020 Poster: Learning to Simulate Complex Physics with Graph Networks »
Alvaro Sanchez-Gonzalez · Jonathan Godwin · Tobias Pfaff · Rex (Zhitao) Ying · Jure Leskovec · Peter Battaglia -
2019 Workshop: Workshop on Self-Supervised Learning »
Aaron van den Oord · Yusuf Aytar · Carl Doersch · Carl Vondrick · Alec Radford · Pierre Sermanet · Amir Zamir · Pieter Abbeel -
2019 Workshop: Generative Modeling and Model-Based Reasoning for Robotics and AI »
Aravind Rajeswaran · Emanuel Todorov · Igor Mordatch · William Agnew · Amy Zhang · Joelle Pineau · Michael Chang · Dumitru Erhan · Sergey Levine · Kimberly Stachenfeld · Marvin Zhang -
2019 Poster: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Oral: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2018 Poster: Adversarial Risk and the Dangers of Evaluating Against Weak Attacks »
Jonathan Uesato · Brendan O'Donoghue · Pushmeet Kohli · Aäron van den Oord -
2018 Poster: Programmatically Interpretable Reinforcement Learning »
Abhinav Verma · Vijayaraghavan Murali · Rishabh Singh · Pushmeet Kohli · Swarat Chaudhuri -
2018 Poster: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia -
2018 Oral: Adversarial Risk and the Dangers of Evaluating Against Weak Attacks »
Jonathan Uesato · Brendan O'Donoghue · Pushmeet Kohli · Aäron van den Oord -
2018 Oral: Programmatically Interpretable Reinforcement Learning »
Abhinav Verma · Vijayaraghavan Murali · Rishabh Singh · Pushmeet Kohli · Swarat Chaudhuri -
2018 Oral: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia