Timezone: »
Poster
On the statistical rate of nonlinear recovery in generative models with heavy-tailed data
Xiaohan Wei · Zhuoran Yang · Zhaoran Wang
We consider estimating a high-dimensional vector from non-linear measurements where the unknown vector is represented by a generative model $G:\mathbb{R}^k\rightarrow\mathbb{R}^d$ with $k\ll d$. Such a model poses structural priors on the unknown vector without having a dedicated basis, and in particular allows new and efficient approaches solving recovery problems with number of measurements far less than the ambient dimension of the vector. While progresses have been made recently regarding theoretical understandings on the linear Gaussian measurements, much less is known when the model is possibly misspecified and the measurements are non-Gaussian.
In this paper, we make a step towards such a direction by considering the scenario where the measurements are non-Gaussian, subject to possibly unknown nonlinear transformations and the responses are heavy-tailed. We then propose new estimators via score functions based on the first and second order Stein's identity, and prove the sample size bound of
$m=\mathcal{O}(k\varepsilon^{-2}\log(L/\varepsilon))$ achieving an $\varepsilon$ error in the form of exponential concentration inequalities. Furthermore, for the special case of multi-layer ReLU generative model, we improve the sample bound by a logarithm factor to $m=\mathcal{O}(k\varepsilon^{-2}\log(d))$, matching the state-of-art statistical rate in compressed sensing for estimating $k$-sparse vectors.
On the technical side, we develop new chaining methods bounding heavy-tailed processes, which could be of independent interest.
Author Information
Xiaohan Wei (University of Southern California)
Zhuoran Yang (Princeton University)
Zhaoran Wang (Northwestern U)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: On the statistical rate of nonlinear recovery in generative models with heavy-tailed data »
Wed Jun 12th 10:05 -- 10:10 PM Room Room 103
More from the Same Authors
-
2020 Poster: Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning »
Lingxiao Wang · Zhuoran Yang · Zhaoran Wang -
2020 Poster: Robust One-Bit Recovery via ReLU Generative Networks: Near-Optimal Statistical Rate and Global Landscape Analysis »
Shuang Qiu · Xiaohan Wei · Zhuoran Yang -
2020 Poster: Generative Adversarial Imitation Learning with Neural Network Parameterization: Global Optimality and Convergence Rate »
Yufeng Zhang · Qi Cai · Zhuoran Yang · Zhaoran Wang -
2020 Poster: Provably Efficient Exploration in Policy Optimization »
Qi Cai · Zhuoran Yang · Chi Jin · Zhaoran Wang -
2020 Poster: On the Global Optimality of Model-Agnostic Meta-Learning »
Lingxiao Wang · Qi Cai · Zhuoran Yang · Zhaoran Wang -
2020 Poster: Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees »
Sen Na · Yuwei Luo · Zhuoran Yang · Zhaoran Wang · Mladen Kolar -
2018 Poster: The Edge Density Barrier: Computational-Statistical Tradeoffs in Combinatorial Inference »
Hao Lu · Yuan Cao · Junwei Lu · Han Liu · Zhaoran Wang -
2018 Poster: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar -
2018 Oral: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar -
2018 Oral: The Edge Density Barrier: Computational-Statistical Tradeoffs in Combinatorial Inference »
Hao Lu · Yuan Cao · Junwei Lu · Han Liu · Zhaoran Wang -
2017 Poster: High-dimensional Non-Gaussian Single Index Models via Thresholded Score Function Estimation »
Zhuoran Yang · Krishnakumar Balasubramanian · Han Liu -
2017 Talk: High-dimensional Non-Gaussian Single Index Models via Thresholded Score Function Estimation »
Zhuoran Yang · Krishnakumar Balasubramanian · Han Liu