Timezone: »
Quantization can improve the execution latency and energy efficiency of neural networks on both commodity GPUs and specialized accelerators. The majority of existing literature focuses on training quantized DNNs, while this work examines the less-studied topic of quantizing a floating-point model without (re)training. DNN weights and activations follow a bell-shaped distribution post-training, while practical hardware uses a linear quantization grid. This leads to challenges in dealing with outliers in the distribution. Prior work has addressed this by clipping the outliers or using specialized hardware. In this work, we propose outlier channel splitting (OCS), which duplicates channels containing outliers, then halves the channel values. The network remains functionally identical, but affected outliers are moved toward the center of the distribution. OCS requires no additional training and works on commodity hardware. Experimental evaluation on ImageNet classification and language modeling shows that OCS can outperform state-of-the-art clipping techniques with only minor overhead.
Author Information
Ritchie Zhao (Cornell University)
Yuwei Hu (Cornell University)
Jordan Dotzel (Cornell University)
Christopher De Sa (Cornell)
Zhiru Zhang (Cornell Univeristy)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Improving Neural Network Quantization without Retraining using Outlier Channel Splitting »
Wed. Jun 12th 12:05 -- 12:10 AM Room Grand Ballroom
More from the Same Authors
-
2022 : MCTensor: A High-Precision Deep Learning Library with Multi-Component Floating-Point »
Tao Yu · Wentao Guo · Canal Li · Tiancheng Yuan · Christopher De Sa -
2022 : A 28nm 8-bit Floating-Point CNN Training Processor with Hardware-Efficient Dynamic Sparsification and 4.7X Training Speedup »
Shreyas Kolala Venkataramanaiah · Jian Meng · Han-Sok Suh · Injune Yeo · Jyotishman Saikia · Sai Kiran Cherupally · Yichi Zhang · Zhiru Zhang · Jae-sun Seo -
2022 : Riemannian Residual Neural Networks »
Isay Katsman · Eric Chen · Sidhanth Holalkere · Aaron Lou · Ser Nam Lim · Christopher De Sa -
2022 Poster: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2022 Spotlight: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2021 Poster: Variance Reduced Training with Stratified Sampling for Forecasting Models »
Yucheng Lu · Youngsuk Park · Lifan Chen · Yuyang Wang · Christopher De Sa · Dean Foster -
2021 Spotlight: Variance Reduced Training with Stratified Sampling for Forecasting Models »
Yucheng Lu · Youngsuk Park · Lifan Chen · Yuyang Wang · Christopher De Sa · Dean Foster -
2021 Poster: Low-Precision Reinforcement Learning: Running Soft Actor-Critic in Half Precision »
Johan Björck · Xiangyu Chen · Christopher De Sa · Carla Gomes · Kilian Weinberger -
2021 Spotlight: Low-Precision Reinforcement Learning: Running Soft Actor-Critic in Half Precision »
Johan Björck · Xiangyu Chen · Christopher De Sa · Carla Gomes · Kilian Weinberger -
2021 Poster: Optimal Complexity in Decentralized Training »
Yucheng Lu · Christopher De Sa -
2021 Poster: SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation »
Wuxinlin Cheng · Chenhui Deng · Zhiqiang Zhao · Yaohui Cai · Zhiru Zhang · Zhuo Feng -
2021 Spotlight: SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation »
Wuxinlin Cheng · Chenhui Deng · Zhiqiang Zhao · Yaohui Cai · Zhiru Zhang · Zhuo Feng -
2021 Oral: Optimal Complexity in Decentralized Training »
Yucheng Lu · Christopher De Sa -
2020 Poster: Moniqua: Modulo Quantized Communication in Decentralized SGD »
Yucheng Lu · Christopher De Sa -
2020 Poster: Differentiating through the Fréchet Mean »
Aaron Lou · Isay Katsman · Qingxuan Jiang · Serge Belongie · Ser Nam Lim · Christopher De Sa -
2019 Poster: Distributed Learning with Sublinear Communication »
Jayadev Acharya · Christopher De Sa · Dylan Foster · Karthik Sridharan -
2019 Oral: Distributed Learning with Sublinear Communication »
Jayadev Acharya · Christopher De Sa · Dylan Foster · Karthik Sridharan -
2019 Poster: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2019 Poster: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2019 Oral: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2019 Oral: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2018 Poster: Minibatch Gibbs Sampling on Large Graphical Models »
Christopher De Sa · Vincent Chen · Wong -
2018 Oral: Minibatch Gibbs Sampling on Large Graphical Models »
Christopher De Sa · Vincent Chen · Wong -
2018 Poster: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2018 Oral: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re