Timezone: »
Poster
Multiplicative Weights Updates as a distributed constrained optimization algorithm: Convergence to second-order stationary points almost always
Ioannis Panageas · Georgios Piliouras · xiao wang
Non-concave maximization has been the subject of much recent study in the optimization and machine learning communities, specifically in deep learning.
Recent papers ([Ge et al. 2015, Lee et al 2017] and references therein) indicate that first order methods work well and avoid saddles points. Results as in [Lee \etal 2017], however, are limited to the \textit{unconstrained} case or for cases where the critical points are in the interior of the feasibility set, which fail to capture some of the most interesting applications. In this paper we focus on \textit{constrained} non-concave maximization. We analyze a variant of a well-established algorithm in machine learning called Multiplicative Weights Update (MWU) for the maximization problem $\max_{\mathbf{x} \in D} P(\mathbf{x})$, where $P$ is non-concave, twice continuously differentiable and $D$ is a product of simplices. We show that MWU converges almost always for small enough stepsizes to critical points that satisfy the second order KKT conditions,
by combining techniques from dynamical systems as well as taking advantage of a recent connection between Baum Eagon inequality and MWU [Palaiopanos et al 2017].
Author Information
Ioannis Panageas (SUTD)
Georgios Piliouras (Singapore University of Technology and Design)
xiao wang (Singapore university of technology and design)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Multiplicative Weights Updates as a distributed constrained optimization algorithm: Convergence to second-order stationary points almost always »
Tue. Jun 11th 07:10 -- 07:15 PM Room Room 104
More from the Same Authors
-
2021 : Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games »
Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras -
2022 Poster: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2022 Spotlight: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2021 Poster: Efficient Online Learning for Dynamic k-Clustering »
Dimitris Fotakis · Georgios Piliouras · Stratis Skoulakis -
2021 Spotlight: Efficient Online Learning for Dynamic k-Clustering »
Dimitris Fotakis · Georgios Piliouras · Stratis Skoulakis -
2021 Poster: Follow-the-Regularized-Leader Routes to Chaos in Routing Games »
Jakub Bielawski · Thiparat Chotibut · Fryderyk Falniowski · Grzegorz Kosiorowski · Michał Misiurewicz · Georgios Piliouras -
2021 Poster: Online Optimization in Games via Control Theory: Connecting Regret, Passivity and Poincaré Recurrence »
Yun Kuen Cheung · Georgios Piliouras -
2021 Spotlight: Follow-the-Regularized-Leader Routes to Chaos in Routing Games »
Jakub Bielawski · Thiparat Chotibut · Fryderyk Falniowski · Grzegorz Kosiorowski · Michał Misiurewicz · Georgios Piliouras -
2021 Spotlight: Online Optimization in Games via Control Theory: Connecting Regret, Passivity and Poincaré Recurrence »
Yun Kuen Cheung · Georgios Piliouras -
2021 Poster: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2021 Spotlight: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2020 Poster: From Chaos to Order: Symmetry and Conservation Laws in Game Dynamics »
Sai Ganesh Nagarajan · David Balduzzi · Georgios Piliouras